mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] add linearconv1d test (#4067)
* add linearconv1d test * add linearconv1d testpull/4157/head
parent
8eb09a4c69
commit
0803a61412
|
@ -103,10 +103,15 @@ class LinearConv1D_Col(ParallelModule):
|
|||
self.reset_parameters(weight_initializer, bias_initializer)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
|
||||
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_fused: int,
|
||||
*args, **kwargs) -> ParallelModule:
|
||||
r"""
|
||||
Convert a huggingface layer `Conv1D` in gpt2 to a parallelized linear layer.
|
||||
|
||||
Args:
|
||||
module (`nn.Linear`): The module to be converted.
|
||||
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication.
|
||||
n_fused (int): The number of layers to be fused. In GPT2, Q,K,V are fused in one weight.
|
||||
"""
|
||||
# get the attributes
|
||||
in_features = module.weight.shape[0]
|
||||
|
@ -135,20 +140,20 @@ class LinearConv1D_Col(ParallelModule):
|
|||
|
||||
# first rearange the order of weight and bias
|
||||
world_size = dist.get_world_size(group=process_group)
|
||||
order = torch.arange(world_size * n_cast)
|
||||
order = torch.arange(world_size * n_fused)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=1)
|
||||
weight_chunks = torch.chunk(module.weight.data, world_size * n_fused, dim=1)
|
||||
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
|
||||
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=1)
|
||||
sharded_weight = shard_colwise(rearanged_weight, process_group)
|
||||
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
|
||||
|
||||
if bias:
|
||||
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
|
||||
bias_chunks = torch.chunk(module.bias.data, world_size * n_fused, dim=0)
|
||||
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
|
||||
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
|
||||
sharded_bias = shard_colwise(rearanged_bias, process_group)
|
||||
|
@ -260,8 +265,8 @@ class LinearConv1D_Row(ParallelModule):
|
|||
self.reset_parameters(weight_initializer, bias_initializer)
|
||||
|
||||
@staticmethod
|
||||
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], n_cast: int,
|
||||
*args, **kwargs) -> ParallelModule:
|
||||
def from_native_module(module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], *args,
|
||||
**kwargs) -> ParallelModule:
|
||||
r"""
|
||||
Convert a native PyTorch linear layer to a parallelized linear layer.
|
||||
"""
|
||||
|
@ -289,26 +294,11 @@ class LinearConv1D_Row(ParallelModule):
|
|||
with torch.no_grad():
|
||||
# the weigh to the linear layer is a transpose
|
||||
# thus shard on col is equal to shard on row
|
||||
|
||||
# first rearange the order of weight and bias
|
||||
world_size = dist.get_world_size(group=process_group)
|
||||
order = torch.arange(world_size * n_cast)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
weight_chunks = torch.chunk(module.weight.data, world_size * n_cast, dim=0)
|
||||
rearanged_weight_chunks = [weight_chunks[i] for i in new_order]
|
||||
rearanged_weight = torch.cat(rearanged_weight_chunks, dim=0)
|
||||
sharded_weight = shard_rowwise(rearanged_weight, process_group)
|
||||
sharded_weight = shard_rowwise(module.weight.data, process_group)
|
||||
linear_1d.weight.data.copy_(sharded_weight.T.contiguous())
|
||||
|
||||
if bias:
|
||||
bias_chunks = torch.chunk(module.bias.data, world_size * n_cast, dim=0)
|
||||
rearanged_bias_chunks = [bias_chunks[i] for i in new_order]
|
||||
rearanged_bias = torch.cat(rearanged_bias_chunks, dim=0)
|
||||
linear_1d.bias.copy_(rearanged_bias.contiguous())
|
||||
linear_1d.bias.copy_(module.bias.data)
|
||||
|
||||
return linear_1d
|
||||
|
||||
|
|
|
@ -44,29 +44,23 @@ class GPT2Policy(Policy):
|
|||
suffix="attn.c_attn",
|
||||
target_module=col_nn.LinearConv1D_Col,
|
||||
kwargs={
|
||||
"n_cast": 3,
|
||||
"n_fused": 3,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.c_proj",
|
||||
target_module=col_nn.LinearConv1D_Row,
|
||||
kwargs={
|
||||
"n_cast": 1,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.c_fc",
|
||||
target_module=col_nn.LinearConv1D_Col,
|
||||
kwargs={
|
||||
"n_cast": 1,
|
||||
"n_fused": 1,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="mlp.c_proj",
|
||||
target_module=col_nn.LinearConv1D_Row,
|
||||
kwargs={
|
||||
"n_cast": 1,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attn.attn_dropout",
|
||||
|
|
|
@ -0,0 +1,107 @@
|
|||
import torch
|
||||
import torch.distributed as dist
|
||||
import torch.nn as nn
|
||||
from torch.testing import assert_close
|
||||
|
||||
import colossalai
|
||||
from colossalai.shardformer.layer import LinearConv1D_Col, LinearConv1D_Row
|
||||
from colossalai.testing import rerun_if_address_is_in_use, spawn
|
||||
|
||||
|
||||
# This code is copied from https://github.com/huggingface/transformers
|
||||
class Conv1D(nn.Module):
|
||||
"""
|
||||
1D-convolutional layer as defined by Radford et al. for OpenAI GPT (and also used in GPT-2).
|
||||
|
||||
Basically works like a linear layer but the weights are transposed.
|
||||
|
||||
Args:
|
||||
nf (`int`): The number of output features.
|
||||
nx (`int`): The number of input features.
|
||||
"""
|
||||
|
||||
def __init__(self, nf, nx):
|
||||
super().__init__()
|
||||
self.nf = nf
|
||||
self.weight = nn.Parameter(torch.empty(nx, nf))
|
||||
self.bias = nn.Parameter(torch.zeros(nf))
|
||||
nn.init.normal_(self.weight, std=0.02)
|
||||
|
||||
def forward(self, x):
|
||||
size_out = x.size()[:-1] + (self.nf,)
|
||||
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
||||
x = x.view(size_out)
|
||||
return x
|
||||
|
||||
|
||||
def rearrange(tensor: torch.Tensor, dim: int):
|
||||
tensor = tensor.clone()
|
||||
world_size = 2
|
||||
order = torch.arange(world_size * 3)
|
||||
new_order = []
|
||||
for i in range(world_size):
|
||||
new_order.append(order[i::world_size])
|
||||
new_order = torch.cat(new_order)
|
||||
|
||||
tensor_chunks = torch.chunk(tensor, world_size * 3, dim=dim)
|
||||
rearanged_tensor_chunks = [tensor_chunks[i] for i in new_order]
|
||||
rearanged_tensor = torch.cat(rearanged_tensor_chunks, dim=dim)
|
||||
return rearanged_tensor
|
||||
|
||||
|
||||
def check_linear_conv_1d_col():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_conv_col = LinearConv1D_Col.from_native_module(linear, process_group=None, gather_output=True, n_fused=3)
|
||||
|
||||
assert linear_conv_col.weight.shape == torch.Size([96, 48])
|
||||
assert linear_conv_col.bias.shape == torch.Size([96])
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_conv_col(x)
|
||||
assert_close(rearrange(out, 1), gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
rank = dist.get_rank()
|
||||
target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank]
|
||||
assert_close(target_grad.transpose(0, 1).contiguous(), linear_conv_col.weight.grad)
|
||||
|
||||
|
||||
def check_linear_1d_row():
|
||||
linear = Conv1D(192, 48).cuda()
|
||||
linear_row = LinearConv1D_Row.from_native_module(linear, process_group=None, parallel_input=False)
|
||||
|
||||
assert linear_row.weight.shape == torch.Size([192, 24])
|
||||
assert linear_row.bias.shape == torch.Size([192])
|
||||
|
||||
# check computation correctness
|
||||
x = torch.rand(4, 48).cuda()
|
||||
out = linear(x)
|
||||
gather_out = linear_row(x)
|
||||
assert_close(out, gather_out)
|
||||
|
||||
# check backward correctness
|
||||
out.sum().backward()
|
||||
gather_out.sum().backward()
|
||||
|
||||
rank = dist.get_rank()
|
||||
target_grad = torch.chunk(linear.weight.grad, 2, dim=1)[rank]
|
||||
assert_close(target_grad, linear_row.weight.grad)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port):
|
||||
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||
check_linear_conv_1d_col()
|
||||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_linearconv():
|
||||
spawn(run_dist, nprocs=2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_linearconv()
|
|
@ -42,9 +42,6 @@ def check_gpt2(rank, world_size, port):
|
|||
|
||||
sub_model_zoo = model_zoo.get_sub_registry('transformers_gpt')
|
||||
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
||||
print(name)
|
||||
# if name == 'transformers_gpt':
|
||||
# continue
|
||||
org_model, sharded_model = build_model(world_size, model_fn)
|
||||
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
||||
|
||||
|
|
Loading…
Reference in New Issue