mirror of https://github.com/hpcaitech/ColossalAI
[NFC] polish colossalai/zero/sharded_model/reduce_scatter.py code style (#1554)
parent
2ac46f7be4
commit
06dccdde44
|
@ -20,6 +20,7 @@ else:
|
|||
|
||||
|
||||
class Bucket:
|
||||
|
||||
def __init__(self, shard_size: int, dtype: torch.dtype, device: torch.device, group: ProcessGroup):
|
||||
self.buffer = torch.zeros((group.size(), shard_size), dtype=dtype, device=device)
|
||||
self.group = group
|
||||
|
@ -34,18 +35,18 @@ class Bucket:
|
|||
return
|
||||
# reduce-scatter bucket
|
||||
if hasattr(dist, "_reduce_scatter_base") and enable_nccl_base_collectives:
|
||||
dist._reduce_scatter_base(
|
||||
self.output_shard[: self.offset], self.buffer[:, : self.offset].contiguous(), group=self.group
|
||||
)
|
||||
dist._reduce_scatter_base(self.output_shard[:self.offset],
|
||||
self.buffer[:, :self.offset].contiguous(),
|
||||
group=self.group)
|
||||
else:
|
||||
dist.reduce_scatter(
|
||||
self.output_shard[: self.offset], list(self.buffer[:, : self.offset].unbind(0)), group=self.group
|
||||
)
|
||||
dist.reduce_scatter(self.output_shard[:self.offset],
|
||||
list(self.buffer[:, :self.offset].unbind(0)),
|
||||
group=self.group)
|
||||
# execute post-reduction callbacks
|
||||
for callback_fn in self.callbacks:
|
||||
callback_fn()
|
||||
# reuse input bucket but allocate a fresh output shard
|
||||
self.buffer[:, : self.offset].zero_()
|
||||
self.buffer[:, :self.offset].zero_()
|
||||
self.offset = 0
|
||||
self.callbacks.clear()
|
||||
self.output_shard = torch.zeros_like(self.buffer[0])
|
||||
|
@ -73,12 +74,12 @@ class Bucket:
|
|||
tensor_size = tensor_list[0].numel()
|
||||
stacked_input = torch.stack(tensor_list).view(self.group.size(), tensor_size)
|
||||
offset = self.offset
|
||||
self.buffer[:, offset: offset + tensor_size].copy_(stacked_input)
|
||||
self.buffer[:, offset:offset + tensor_size].copy_(stacked_input)
|
||||
self.offset += tensor_size
|
||||
|
||||
# callback will be given the reduced result
|
||||
if callback_fn is not None:
|
||||
result_view = self.output_shard[offset: offset + tensor_size].view_as(tensor_list[0])
|
||||
result_view = self.output_shard[offset:offset + tensor_size].view_as(tensor_list[0])
|
||||
self.callbacks.append(functools.partial(callback_fn, result_view))
|
||||
|
||||
|
||||
|
@ -141,9 +142,8 @@ class ReduceScatterBucketer:
|
|||
"""
|
||||
world_size = group.size()
|
||||
|
||||
assert (
|
||||
len(input_list) == world_size
|
||||
), f"reduce_scatter received {len(input_list)} inputs, expected group.size() ({world_size})"
|
||||
assert (len(input_list) == world_size
|
||||
), f"reduce_scatter received {len(input_list)} inputs, expected group.size() ({world_size})"
|
||||
|
||||
first_input = input_list[0]
|
||||
first_input_size = first_input.numel()
|
||||
|
@ -183,7 +183,7 @@ class ReduceScatterBucketer:
|
|||
|
||||
@functools.lru_cache()
|
||||
def _get_shard_size(self, element_size: int, num_shards: int) -> int:
|
||||
if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing.
|
||||
if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing.
|
||||
return 0
|
||||
MB = 1024 * 1024
|
||||
bucket_size = self.bucket_size_mb * MB / element_size
|
||||
|
|
Loading…
Reference in New Issue