[NFC] polish colossalai/zero/sharded_model/reduce_scatter.py code style (#1554)

pull/1550/head
Fazzie-Maqianli 2022-09-08 16:56:20 +08:00 committed by Frank Lee
parent 2ac46f7be4
commit 06dccdde44
1 changed files with 13 additions and 13 deletions

View File

@ -20,6 +20,7 @@ else:
class Bucket:
def __init__(self, shard_size: int, dtype: torch.dtype, device: torch.device, group: ProcessGroup):
self.buffer = torch.zeros((group.size(), shard_size), dtype=dtype, device=device)
self.group = group
@ -34,18 +35,18 @@ class Bucket:
return
# reduce-scatter bucket
if hasattr(dist, "_reduce_scatter_base") and enable_nccl_base_collectives:
dist._reduce_scatter_base(
self.output_shard[: self.offset], self.buffer[:, : self.offset].contiguous(), group=self.group
)
dist._reduce_scatter_base(self.output_shard[:self.offset],
self.buffer[:, :self.offset].contiguous(),
group=self.group)
else:
dist.reduce_scatter(
self.output_shard[: self.offset], list(self.buffer[:, : self.offset].unbind(0)), group=self.group
)
dist.reduce_scatter(self.output_shard[:self.offset],
list(self.buffer[:, :self.offset].unbind(0)),
group=self.group)
# execute post-reduction callbacks
for callback_fn in self.callbacks:
callback_fn()
# reuse input bucket but allocate a fresh output shard
self.buffer[:, : self.offset].zero_()
self.buffer[:, :self.offset].zero_()
self.offset = 0
self.callbacks.clear()
self.output_shard = torch.zeros_like(self.buffer[0])
@ -73,12 +74,12 @@ class Bucket:
tensor_size = tensor_list[0].numel()
stacked_input = torch.stack(tensor_list).view(self.group.size(), tensor_size)
offset = self.offset
self.buffer[:, offset: offset + tensor_size].copy_(stacked_input)
self.buffer[:, offset:offset + tensor_size].copy_(stacked_input)
self.offset += tensor_size
# callback will be given the reduced result
if callback_fn is not None:
result_view = self.output_shard[offset: offset + tensor_size].view_as(tensor_list[0])
result_view = self.output_shard[offset:offset + tensor_size].view_as(tensor_list[0])
self.callbacks.append(functools.partial(callback_fn, result_view))
@ -141,9 +142,8 @@ class ReduceScatterBucketer:
"""
world_size = group.size()
assert (
len(input_list) == world_size
), f"reduce_scatter received {len(input_list)} inputs, expected group.size() ({world_size})"
assert (len(input_list) == world_size
), f"reduce_scatter received {len(input_list)} inputs, expected group.size() ({world_size})"
first_input = input_list[0]
first_input_size = first_input.numel()
@ -183,7 +183,7 @@ class ReduceScatterBucketer:
@functools.lru_cache()
def _get_shard_size(self, element_size: int, num_shards: int) -> int:
if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing.
if self.bucket_size_mb <= 0: # Values <= 0 disable bucketing.
return 0
MB = 1024 * 1024
bucket_size = self.bucket_size_mb * MB / element_size