Browse Source

update test

pull/2364/head
oahzxl 2 years ago
parent
commit
06a5355d98
  1. 111
      tests/test_autochunk/autochunk_test.py

111
tests/test_autochunk/autochunk_test.py

@ -1,76 +1,60 @@
import copy
import torch
import torch.nn.functional as F
import pytest
import torch
import torch.fx
import torch.multiprocessing as mp
from torch.fx import GraphModule
from colossalai.fx import ColoTracer
import colossalai
from colossalai.utils import free_port
from colossalai.autochunk.chunk_codegen import ChunkCodeGen
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp, TensorMetadata
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.fx.profiler import MetaTensor
from colossalai.utils import free_port
from tests.test_autochunk.evoformer.evoformer import evoformer_base
from ...colossalai.autochunk.chunk_codegen import ChunkCodeGen
with_codegen = True
def _is_all_gradient_close(m: torch.nn.Module, gm: GraphModule) -> bool:
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
if m_p.grad is not None and not torch.allclose(m_p.grad, gm_p.grad):
return False
return True
def _is_all_param_close(m: torch.nn.Module, gm: GraphModule) -> bool:
for m_p, gm_p in zip(m.parameters(), gm.parameters()):
if m_p.grad is not None and not torch.allclose(m_p.data, gm_p.data):
return False
return True
def _test_fwd_and_bwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
# now_mem = torch.cuda.memory_allocated() / 1024**2
# with torch.no_grad():
# node0 = node.clone()
# pair0 = pair.clone()
# model.graph(node0, pair0, now_mem)
# new_now_mem = torch.cuda.memory_allocated() / 1024**2
# new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
# print("\ncode now:%.2f max:%.2f" %(new_now_mem - now_mem, new_max_mem - now_mem))
def _test_fwd(model: torch.nn.Module, gm: ColoGraphModule, node, pair):
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
with torch.no_grad():
node1 = node.clone()
pair1 = pair.clone()
gm(node1, pair1)
gm(node1, pair1)
new_now_mem = torch.cuda.memory_allocated() / 1024**2
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
print("gm now:%.2f max:%.2f" %(new_now_mem - now_mem, new_max_mem - now_mem))
print(
"autochunk now mem:%.2f max mem:%.2f"
% (new_now_mem - now_mem, new_max_mem - now_mem)
)
# test forward
with torch.no_grad():
non_fx_out = model(node, pair)
fx_out = gm(node, pair)
assert torch.allclose(non_fx_out[0], fx_out[0], atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(torch.abs(non_fx_out[0] - fx_out[0]))
assert torch.allclose(non_fx_out[1], fx_out[1], atol=1e-4), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(torch.abs(non_fx_out[1] - fx_out[1]))
# test barckward
# loss0 = non_fx_out[0].sum() + non_fx_out[1].sum()
# loss0.backward()
# loss1 = fx_out[0].sum() + fx_out[1].sum()
# loss1.backward()
# assert _is_all_param_close(model, gm)
# assert _is_all_gradient_close(model, gm), "gm doesn't have the same gradient as original one"
assert torch.allclose(
non_fx_out[0], fx_out[0], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[0] - fx_out[0])
)
assert torch.allclose(
non_fx_out[1], fx_out[1], atol=1e-4
), "fx_out doesn't comply with original output, diff is %.2e" % torch.mean(
torch.abs(non_fx_out[1] - fx_out[1])
)
def _run_offload_codegen(rank):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currectly
colossalai.launch(config={}, rank=rank, world_size=1, host='localhost', port=free_port(), backend='nccl')
colossalai.launch(
config={},
rank=rank,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
# build model and input
model = evoformer_base().cuda()
@ -78,15 +62,25 @@ def _run_offload_codegen(rank):
pair = torch.randn(1, 300, 300, 128).cuda()
# trace the module and replace codegen
graph = ColoTracer().trace(model, meta_args={'node': node.to(torch.device('meta')), 'pair': pair.to(torch.device('meta'))})
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
graph = ColoTracer().trace(
model,
meta_args={
"node": node.to(torch.device("meta")),
"pair": pair.to(torch.device("meta")),
},
)
gm_prop = torch.fx.symbolic_trace(model) # must use symbolic_trace
interp = MetaInfoProp(gm_prop)
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
# now run it twice to get meta info in graph module, not necessary
gm = torch.fx.GraphModule(model, graph)
interp = MetaInfoProp(gm)
interp.propagate(MetaTensor(node, fake_device='cuda:0'), MetaTensor(pair, fake_device='cuda:0'))
interp.propagate(
MetaTensor(node, fake_device="cuda:0"), MetaTensor(pair, fake_device="cuda:0")
)
codegen = ChunkCodeGen(gm_prop)
graph.set_codegen(codegen)
@ -94,15 +88,14 @@ def _run_offload_codegen(rank):
gm.recompile()
# assert we have all the components
code = graph.python_code("self").src
print(code)
# code = graph.python_code("self").src
# print(code)
_test_fwd_and_bwd(model, gm, node, pair)
_test_fwd(model, gm, node, pair)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
def test_act_ckpt_codegen():
def test_autochunk():
mp.spawn(_run_offload_codegen, nprocs=1)

Loading…
Cancel
Save