[Gemini] independent runtime tracer (#1974)

pull/1978/head^2
Jiarui Fang 2022-11-18 10:53:42 +08:00 committed by GitHub
parent 0da1d00399
commit 0529fcde06
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 271 additions and 143 deletions

View File

@ -3,8 +3,9 @@ from .memstats_collector import MemStatsCollector # isort:skip
from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER # isort:skip
from .chunk_memstats_collector import ChunkMemStatsCollector # isort:skip
from .static_memstats_collector import StaticMemStatsCollector # isort:skip
from .module_tracer_wrapper import MemtracerWrapper # isort:skip
__all__ = [
'AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'ChunkMemStatsCollector',
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER'
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER', 'MemtracerWrapper'
]

View File

@ -1,12 +1,11 @@
import json
from abc import abstractmethod
from concurrent.futures import ThreadPoolExecutor
from time import sleep, time
import json
import torch
from colossalai.utils import colo_device_memory_used
from colossalai.utils import get_current_device
from colossalai.utils import colo_device_memory_used, get_current_device
class MemoryMonitor:
@ -134,7 +133,13 @@ class SyncCudaMemoryMonitor(MemoryMonitor):
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
def finish(self):
def finish(self) -> int:
"""
return max gpu memory used since latest `start()`.
Returns:
int: max GPU memory
"""
torch.cuda.synchronize()
self.time_stamps.append(time())
max_usage = torch.cuda.max_memory_allocated()

View File

@ -0,0 +1,36 @@
from colossalai.gemini.ophooks import register_ophooks_recursively
from colossalai.gemini.ophooks.mem_trace_hook import MemTracerOpHook
__all__ = ['MemtracerWrapper']
class _Wrapper():
def __init__(self, model, ophook_list):
self._ophook_list = ophook_list
self._model = model
def __call__(self, *args, **kwargs):
return self._model(*args, **kwargs)
def forward(self, *args, **kwargs):
return self._model.forward(*args, **kwargs)
def backward(self, loss):
loss.backward()
for ophook in self._ophook_list:
ophook.post_iter()
def save_results(self, filename):
for ophook in self._ophook_list:
ophook.save_results(filename)
def show_mem_stats(self):
self._ophook_list[0].show_mem_stats()
def MemtracerWrapper(model):
ophook_list = [MemTracerOpHook()]
register_ophooks_recursively(model, ophook_list)
engine = _Wrapper(model, ophook_list)
return engine

View File

@ -0,0 +1,86 @@
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.gemini.ophooks import BaseOpHook
class MemTracerOpHook(BaseOpHook):
def __init__(self):
super().__init__()
self.mem_monitor = SyncCudaMemoryMonitor()
self._cur_non_model_data_vol = 0
self._non_model_data_list = []
self._cur_model_data_vol = 0
def _move_module_to_dev(self, module, dev: str) -> int:
"""_move_module_to_dev
move module to cuda
Args:
module (torch.nn.Module): a PyTorch module
dev (torch.device): the target device
Returns:
int: the data volume of this module on the cuda
"""
assert isinstance(dev, str), f"device should be a str not torch.device"
comm_volume = 0
for p in module.parameters():
if p.data.device.type != dev:
p.data = p.data.to(dev)
comm_volume += p.data.numel() * p.data.element_size()
if p.grad is not None:
if p.grad.device.type != dev:
p.grad = p.grad.to(dev)
comm_volume += p.grad.numel() * p.grad.element_size()
if dev == 'cuda':
self._cur_model_data_vol = comm_volume
return comm_volume
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'FWD PRE {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB')
def post_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
# print(f'FWD POST {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'BWD PRE {module.__class__.__name__}')
def post_bwd_exec(self, module: torch.nn.Module, input):
# bwd Op will generate grad. comm_volume is grad + data volume on cuda.
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
# print(f'BWD POST {module.__class__.__name__} {cuda_volume / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_iter(self):
pass
def post_iter(self):
self.mem_monitor.finish()
# print(f'post_iter')
def save_results(self, filename):
self.mem_monitor.save(filename)
def show_mem_stats(self):
start_timestamp = min(self.mem_monitor.time_stamps)
self.mem_monitor.time_stamps = [elem - start_timestamp for elem in self.mem_monitor.time_stamps]
min_mem_used = min(self.mem_monitor.mem_stats)
self.mem_monitor.mem_stats = [elem - min_mem_used for elem in self.mem_monitor.mem_stats]
print(self.mem_monitor.time_stamps)
print(self.mem_monitor.mem_stats)