[Gemini] independent runtime tracer (#1974)

pull/1978/head^2
Jiarui Fang 2022-11-18 10:53:42 +08:00 committed by GitHub
parent 0da1d00399
commit 0529fcde06
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 271 additions and 143 deletions

View File

@ -3,8 +3,9 @@ from .memstats_collector import MemStatsCollector # isort:skip
from .model_data_memtracer import GLOBAL_MODEL_DATA_TRACER # isort:skip
from .chunk_memstats_collector import ChunkMemStatsCollector # isort:skip
from .static_memstats_collector import StaticMemStatsCollector # isort:skip
from .module_tracer_wrapper import MemtracerWrapper # isort:skip
__all__ = [
'AsyncMemoryMonitor', 'SyncCudaMemoryMonitor', 'MemStatsCollector', 'ChunkMemStatsCollector',
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER'
'StaticMemStatsCollector', 'GLOBAL_MODEL_DATA_TRACER', 'MemtracerWrapper'
]

View File

@ -1,142 +1,147 @@
from abc import abstractmethod
from concurrent.futures import ThreadPoolExecutor
from time import sleep, time
import json
import torch
from colossalai.utils import colo_device_memory_used
from colossalai.utils import get_current_device
class MemoryMonitor:
"""Base class for all types of memory monitor.
All monitors should have a list called `time_stamps` and a list called `mem_stats`.
"""
def __init__(self):
self.time_stamps = []
self.mem_stats = []
def __len__(self):
return len(self.mem_stats)
@abstractmethod
def start(self):
pass
@abstractmethod
def finish(self):
pass
def state_dict(self):
return {
"time_stamps": self.time_stamps,
"mem_stats": self.mem_stats,
}
def save(self, filename):
with open(filename, "w") as f:
json.dump(self.state_dict(), f)
def clear(self):
self.mem_stats.clear()
self.time_stamps.clear()
class AsyncMemoryMonitor(MemoryMonitor):
"""
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
at interval of `1/(10**power)` sec.
The idea comes from Runtime Memory Tracer of PatrickStar
`PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management`_
Usage::
async_mem_monitor = AsyncMemoryMonitor()
input = torch.randn(2, 20).cuda()
OP1 = torch.nn.Linear(20, 30).cuda()
OP2 = torch.nn.Linear(30, 40).cuda()
async_mem_monitor.start()
output = OP1(input)
async_mem_monitor.finish()
async_mem_monitor.start()
output = OP2(output)
async_mem_monitor.finish()
async_mem_monitor.save('log.pkl')
Args:
power (int, optional): the power of time interva. Defaults to 10.
.. _PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management:
https://arxiv.org/abs/2108.05818
"""
def __init__(self, power: int = 10):
super().__init__()
self.keep_measuring = False
current_device = get_current_device()
def _set_cuda_device():
torch.cuda.set_device(current_device)
self.executor = ThreadPoolExecutor(max_workers=1, initializer=_set_cuda_device)
self.monitor_thread = None
self.interval = 1 / (10**power)
def set_interval(self, power: int):
self.clear()
self.interval = 1 / (10**power)
def is_measuring(self):
return self.keep_measuring
def start(self):
self.keep_measuring = True
self.monitor_thread = self.executor.submit(self._measure_usage)
def finish(self):
if self.keep_measuring is False:
return 0
self.keep_measuring = False
max_usage = self.monitor_thread.result()
self.monitor_thread = None
self.time_stamps.append(time())
self.mem_stats.append(max_usage)
return max_usage
def _measure_usage(self):
max_usage = 0
while self.keep_measuring:
max_usage = max(
max_usage,
colo_device_memory_used(get_current_device()),
)
sleep(self.interval)
return max_usage
class SyncCudaMemoryMonitor(MemoryMonitor):
"""
A synchronized cuda memory monitor.
It only record the maximum allocated cuda memory from start point to finish point.
"""
def __init__(self, power: int = 10):
super().__init__()
def start(self):
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
def finish(self):
torch.cuda.synchronize()
self.time_stamps.append(time())
max_usage = torch.cuda.max_memory_allocated()
self.mem_stats.append(max_usage)
return max_usage
import json
from abc import abstractmethod
from concurrent.futures import ThreadPoolExecutor
from time import sleep, time
import torch
from colossalai.utils import colo_device_memory_used, get_current_device
class MemoryMonitor:
"""Base class for all types of memory monitor.
All monitors should have a list called `time_stamps` and a list called `mem_stats`.
"""
def __init__(self):
self.time_stamps = []
self.mem_stats = []
def __len__(self):
return len(self.mem_stats)
@abstractmethod
def start(self):
pass
@abstractmethod
def finish(self):
pass
def state_dict(self):
return {
"time_stamps": self.time_stamps,
"mem_stats": self.mem_stats,
}
def save(self, filename):
with open(filename, "w") as f:
json.dump(self.state_dict(), f)
def clear(self):
self.mem_stats.clear()
self.time_stamps.clear()
class AsyncMemoryMonitor(MemoryMonitor):
"""
An Async Memory Monitor runing during computing. Sampling memory usage of the current GPU
at interval of `1/(10**power)` sec.
The idea comes from Runtime Memory Tracer of PatrickStar
`PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management`_
Usage::
async_mem_monitor = AsyncMemoryMonitor()
input = torch.randn(2, 20).cuda()
OP1 = torch.nn.Linear(20, 30).cuda()
OP2 = torch.nn.Linear(30, 40).cuda()
async_mem_monitor.start()
output = OP1(input)
async_mem_monitor.finish()
async_mem_monitor.start()
output = OP2(output)
async_mem_monitor.finish()
async_mem_monitor.save('log.pkl')
Args:
power (int, optional): the power of time interva. Defaults to 10.
.. _PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management:
https://arxiv.org/abs/2108.05818
"""
def __init__(self, power: int = 10):
super().__init__()
self.keep_measuring = False
current_device = get_current_device()
def _set_cuda_device():
torch.cuda.set_device(current_device)
self.executor = ThreadPoolExecutor(max_workers=1, initializer=_set_cuda_device)
self.monitor_thread = None
self.interval = 1 / (10**power)
def set_interval(self, power: int):
self.clear()
self.interval = 1 / (10**power)
def is_measuring(self):
return self.keep_measuring
def start(self):
self.keep_measuring = True
self.monitor_thread = self.executor.submit(self._measure_usage)
def finish(self):
if self.keep_measuring is False:
return 0
self.keep_measuring = False
max_usage = self.monitor_thread.result()
self.monitor_thread = None
self.time_stamps.append(time())
self.mem_stats.append(max_usage)
return max_usage
def _measure_usage(self):
max_usage = 0
while self.keep_measuring:
max_usage = max(
max_usage,
colo_device_memory_used(get_current_device()),
)
sleep(self.interval)
return max_usage
class SyncCudaMemoryMonitor(MemoryMonitor):
"""
A synchronized cuda memory monitor.
It only record the maximum allocated cuda memory from start point to finish point.
"""
def __init__(self, power: int = 10):
super().__init__()
def start(self):
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
def finish(self) -> int:
"""
return max gpu memory used since latest `start()`.
Returns:
int: max GPU memory
"""
torch.cuda.synchronize()
self.time_stamps.append(time())
max_usage = torch.cuda.max_memory_allocated()
self.mem_stats.append(max_usage)
return max_usage

View File

@ -0,0 +1,36 @@
from colossalai.gemini.ophooks import register_ophooks_recursively
from colossalai.gemini.ophooks.mem_trace_hook import MemTracerOpHook
__all__ = ['MemtracerWrapper']
class _Wrapper():
def __init__(self, model, ophook_list):
self._ophook_list = ophook_list
self._model = model
def __call__(self, *args, **kwargs):
return self._model(*args, **kwargs)
def forward(self, *args, **kwargs):
return self._model.forward(*args, **kwargs)
def backward(self, loss):
loss.backward()
for ophook in self._ophook_list:
ophook.post_iter()
def save_results(self, filename):
for ophook in self._ophook_list:
ophook.save_results(filename)
def show_mem_stats(self):
self._ophook_list[0].show_mem_stats()
def MemtracerWrapper(model):
ophook_list = [MemTracerOpHook()]
register_ophooks_recursively(model, ophook_list)
engine = _Wrapper(model, ophook_list)
return engine

View File

@ -0,0 +1,86 @@
import torch
from colossalai.gemini.memory_tracer import SyncCudaMemoryMonitor
from colossalai.gemini.ophooks import BaseOpHook
class MemTracerOpHook(BaseOpHook):
def __init__(self):
super().__init__()
self.mem_monitor = SyncCudaMemoryMonitor()
self._cur_non_model_data_vol = 0
self._non_model_data_list = []
self._cur_model_data_vol = 0
def _move_module_to_dev(self, module, dev: str) -> int:
"""_move_module_to_dev
move module to cuda
Args:
module (torch.nn.Module): a PyTorch module
dev (torch.device): the target device
Returns:
int: the data volume of this module on the cuda
"""
assert isinstance(dev, str), f"device should be a str not torch.device"
comm_volume = 0
for p in module.parameters():
if p.data.device.type != dev:
p.data = p.data.to(dev)
comm_volume += p.data.numel() * p.data.element_size()
if p.grad is not None:
if p.grad.device.type != dev:
p.grad = p.grad.to(dev)
comm_volume += p.grad.numel() * p.grad.element_size()
if dev == 'cuda':
self._cur_model_data_vol = comm_volume
return comm_volume
def pre_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'FWD PRE {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB')
def post_fwd_exec(self, module: torch.nn.Module, *args):
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
# print(f'FWD POST {module.__class__.__name__} cuda used {(cuda_volume) / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_bwd_exec(self, module: torch.nn.Module, input, output):
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
self._move_module_to_dev(module, 'cuda')
self.mem_monitor.start()
# print(f'BWD PRE {module.__class__.__name__}')
def post_bwd_exec(self, module: torch.nn.Module, input):
# bwd Op will generate grad. comm_volume is grad + data volume on cuda.
assert isinstance(module, torch.nn.Module)
if module.training:
cuda_volume = self.mem_monitor.finish()
comm_volume = self._move_module_to_dev(module, 'cpu')
# print(f'BWD POST {module.__class__.__name__} {cuda_volume / 1e6} MB, non-model data used {(cuda_volume - comm_volume) / 1e6} MB')
def pre_iter(self):
pass
def post_iter(self):
self.mem_monitor.finish()
# print(f'post_iter')
def save_results(self, filename):
self.mem_monitor.save(filename)
def show_mem_stats(self):
start_timestamp = min(self.mem_monitor.time_stamps)
self.mem_monitor.time_stamps = [elem - start_timestamp for elem in self.mem_monitor.time_stamps]
min_mem_used = min(self.mem_monitor.mem_stats)
self.mem_monitor.mem_stats = [elem - min_mem_used for elem in self.mem_monitor.mem_stats]
print(self.mem_monitor.time_stamps)
print(self.mem_monitor.mem_stats)