mirror of https://github.com/hpcaitech/ColossalAI
[Tensor] TP Linear 1D row (#843)
parent
cf6d1c9284
commit
05023ecfee
|
@ -1,9 +1,10 @@
|
||||||
import torch
|
import torch
|
||||||
from colossalai.tensor.op_wrapper import colo_op_impl
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
||||||
from colossalai.tensor.colo_tensor import ColoTensor
|
from colossalai.tensor.colo_tensor import ColoTensor
|
||||||
|
from colossalai.context import ParallelMode
|
||||||
|
from colossalai.nn.layer.parallel_1d._utils import split_forward_gather_backward, reduce_input
|
||||||
from packaging import version
|
from packaging import version
|
||||||
|
|
||||||
|
|
||||||
@colo_op_impl(torch.nn.functional.linear)
|
@colo_op_impl(torch.nn.functional.linear)
|
||||||
def colo_linear(types, args, kwargs, pg):
|
def colo_linear(types, args, kwargs, pg):
|
||||||
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
"""Handles ``__torch_function__`` dispatch for ``torch.nn.functional.linear``.
|
||||||
|
@ -19,12 +20,31 @@ def colo_linear(types, args, kwargs, pg):
|
||||||
bias = None
|
bias = None
|
||||||
else:
|
else:
|
||||||
bias = kwargs.get('bias', None)
|
bias = kwargs.get('bias', None)
|
||||||
|
|
||||||
if isinstance(bias, ColoTensor):
|
if isinstance(bias, ColoTensor):
|
||||||
bias = bias.torch_tensor()
|
bias = bias.torch_tensor()
|
||||||
|
|
||||||
# Add communication logic before and after linear call.
|
# Add communication logic before and after linear call.
|
||||||
if isinstance(weight, ColoTensor):
|
if isinstance(weight, ColoTensor):
|
||||||
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
if weight.shard_spec == None:
|
||||||
|
return torch.nn.functional.linear(input_tensor, weight.torch_tensor(), bias)
|
||||||
|
elif weight.shard_spec == '1Drow':
|
||||||
|
"""
|
||||||
|
Input:S[1] x Weight:S[0] = Output:P
|
||||||
|
All-Reduce(Output) + bias = res
|
||||||
|
"""
|
||||||
|
# Input:S[1]
|
||||||
|
input_per_partition = split_forward_gather_backward(input_tensor, ParallelMode.PARALLEL_1D, dim=-1)
|
||||||
|
# Output:P
|
||||||
|
partial_output = torch.nn.functional.linear(input_per_partition, weight.torch_tensor())
|
||||||
|
# Reduce(Output)
|
||||||
|
output = reduce_input(partial_output, ParallelMode.PARALLEL_1D)
|
||||||
|
# Bias
|
||||||
|
if bias is not None:
|
||||||
|
output = output + bias
|
||||||
|
return output
|
||||||
|
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
else:
|
else:
|
||||||
return torch.nn.functional.linear(input_tensor, weight, bias)
|
return torch.nn.functional.linear(input_tensor, weight, bias)
|
||||||
|
|
|
@ -4,7 +4,6 @@ from typing import Tuple
|
||||||
import numpy
|
import numpy
|
||||||
from .op_wrapper import _COLOSSAL_OPS
|
from .op_wrapper import _COLOSSAL_OPS
|
||||||
|
|
||||||
|
|
||||||
class ColoTensor(object):
|
class ColoTensor(object):
|
||||||
""" Data Structure for Tensor in Colossal-AI
|
""" Data Structure for Tensor in Colossal-AI
|
||||||
1. It contains a torch.Tensor as an attribute.
|
1. It contains a torch.Tensor as an attribute.
|
||||||
|
@ -24,6 +23,7 @@ class ColoTensor(object):
|
||||||
pin_memory=False,
|
pin_memory=False,
|
||||||
device=None,
|
device=None,
|
||||||
torch_tensor=torch.empty(0),
|
torch_tensor=torch.empty(0),
|
||||||
|
shard_spec: str = None,
|
||||||
):
|
):
|
||||||
self._size = size
|
self._size = size
|
||||||
self._dtype = dtype
|
self._dtype = dtype
|
||||||
|
@ -31,11 +31,29 @@ class ColoTensor(object):
|
||||||
self._pin_memory = pin_memory
|
self._pin_memory = pin_memory
|
||||||
self._device = device
|
self._device = device
|
||||||
self._torch_tensor = torch_tensor
|
self._torch_tensor = torch_tensor
|
||||||
|
self._shard_spec = shard_spec
|
||||||
|
|
||||||
|
@property
|
||||||
|
def shard_spec(self) -> Optional[str]:
|
||||||
|
return self._shard_spec
|
||||||
|
|
||||||
|
@property
|
||||||
|
def data(self):
|
||||||
|
return self._torch_tensor.data
|
||||||
|
|
||||||
|
@property
|
||||||
|
def grad(self):
|
||||||
|
return self._torch_tensor.grad
|
||||||
|
|
||||||
|
@property
|
||||||
|
def size(self):
|
||||||
|
return self._size
|
||||||
|
|
||||||
def numel(self):
|
def numel(self):
|
||||||
return product(self._size)
|
return product(self._size)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
|
||||||
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoTensor':
|
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoTensor':
|
||||||
colo_t = ColoTensor(*tensor.size(),
|
colo_t = ColoTensor(*tensor.size(),
|
||||||
dtype=tensor.dtype,
|
dtype=tensor.dtype,
|
||||||
|
|
|
@ -0,0 +1,91 @@
|
||||||
|
import torch
|
||||||
|
from colossalai.context.parallel_mode import ParallelMode
|
||||||
|
from colossalai.tensor import ColoTensor
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
|
||||||
|
import colossalai
|
||||||
|
import pytest
|
||||||
|
import torch
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use
|
||||||
|
from colossalai.utils.cuda import get_current_device
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
from colossalai.core import global_context as gpc
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
from test_tensor_utils import check_equal, replace_parameter_add_grad, broadcast_tensor_chunk
|
||||||
|
|
||||||
|
def run_linear_tp1d_row_test():
|
||||||
|
device = get_current_device()
|
||||||
|
dtype = torch.float32
|
||||||
|
DEPTH = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
||||||
|
in_features = 4
|
||||||
|
out_features = 5
|
||||||
|
|
||||||
|
local_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
||||||
|
|
||||||
|
layer_master = torch.nn.Linear(in_features, out_features)
|
||||||
|
layer = torch.nn.Linear(in_features, out_features)
|
||||||
|
|
||||||
|
A_shape = (2, in_features)
|
||||||
|
A_master = torch.randn(A_shape, dtype=dtype, device=device)
|
||||||
|
A = broadcast_tensor_chunk(A_master, chunk_size=1)
|
||||||
|
A.requires_grad = True
|
||||||
|
|
||||||
|
W_shape = (out_features, in_features)
|
||||||
|
W_master = torch.randn(W_shape, dtype=dtype, device=device)
|
||||||
|
W = broadcast_tensor_chunk(W_master, chunk_size=DEPTH, local_rank=local_rank)
|
||||||
|
W.requires_grad = True
|
||||||
|
|
||||||
|
B_shape = (out_features)
|
||||||
|
B_master = torch.randn(B_shape, dtype=dtype, device=device)
|
||||||
|
B = broadcast_tensor_chunk(B_master, chunk_size=1)
|
||||||
|
B.requires_grad = True
|
||||||
|
|
||||||
|
# replace the torch nn.Parameters with ColoTensor
|
||||||
|
sharded_weight = ColoTensor.init_from_torch_tensor(W)
|
||||||
|
sharded_weight._shard_spec = "1Drow"
|
||||||
|
sharded_bias = ColoTensor.init_from_torch_tensor(B)
|
||||||
|
replace_parameter_add_grad(layer, sharded_weight, sharded_bias)
|
||||||
|
out = layer(A)
|
||||||
|
|
||||||
|
replace_parameter_add_grad(layer_master, W_master, B_master)
|
||||||
|
A_master.requires_grad = True
|
||||||
|
#C_master = torch.matmul(A_master, W_master.transpose(0, 1)) + B_master
|
||||||
|
C_master = layer_master(A_master)
|
||||||
|
C = C_master.clone()
|
||||||
|
|
||||||
|
check_equal(out, C)
|
||||||
|
|
||||||
|
grad_shape = C_master.shape
|
||||||
|
grad_master = torch.randn(grad_shape, dtype=dtype, device=get_current_device())
|
||||||
|
grad = broadcast_tensor_chunk(grad_master, chunk_size=1)
|
||||||
|
out.backward(grad)
|
||||||
|
|
||||||
|
grad_master = grad_master.clone()
|
||||||
|
C_master.backward(grad_master)
|
||||||
|
|
||||||
|
W_grad = W_master.grad
|
||||||
|
W_grad = torch.chunk(W_grad, DEPTH, dim=-1)[local_rank]
|
||||||
|
check_equal(W_grad, layer.weight.grad)
|
||||||
|
|
||||||
|
B_grad = B_master.grad
|
||||||
|
check_equal(B_grad, layer.bias.grad)
|
||||||
|
|
||||||
|
def run_dist(rank, world_size, port):
|
||||||
|
config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
|
||||||
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
||||||
|
run_linear_tp1d_row_test()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.dist
|
||||||
|
@parameterize('world_size', [1, 4])
|
||||||
|
@rerun_if_address_is_in_use()
|
||||||
|
def test_linear_1d(world_size):
|
||||||
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
||||||
|
mp.spawn(run_func, nprocs=world_size)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_linear_1d()
|
|
@ -0,0 +1 @@
|
||||||
|
from ._util import *
|
|
@ -0,0 +1,20 @@
|
||||||
|
import torch
|
||||||
|
import torch.distributed as dist
|
||||||
|
|
||||||
|
def check_equal(A, B):
|
||||||
|
assert torch.allclose(A, B, rtol=1e-3, atol=1e-1) == True
|
||||||
|
|
||||||
|
def replace_parameter_add_grad(layer, weight=None, bias=None):
|
||||||
|
if weight is not None:
|
||||||
|
delattr(layer, 'weight')
|
||||||
|
setattr(layer, 'weight', weight)
|
||||||
|
layer.weight.requires_grad = True
|
||||||
|
if bias is not None:
|
||||||
|
delattr(layer, 'bias')
|
||||||
|
setattr(layer, 'bias', bias)
|
||||||
|
layer.bias.requires_grad = True
|
||||||
|
|
||||||
|
def broadcast_tensor_chunk(tensor, chunk_size=1, local_rank=0):
|
||||||
|
dist.broadcast(tensor, src=0)
|
||||||
|
tensor_chunk = torch.chunk(tensor, chunk_size, dim=-1)[local_rank]
|
||||||
|
return tensor_chunk.clone()
|
Loading…
Reference in New Issue