[Inference/Kernel]Add get_cos_and_sin Kernel (#5528)

* Add get_cos_and_sin kernel

* fix code comments

* fix code typos

* merge common codes of get_cos_and_sin kernel.

* Fixed a typo

* Changed 'asset allclose' to 'assert equal'.
pull/5546/head
yuehuayingxueluo 2024-04-01 13:47:14 +08:00 committed by GitHub
parent 934e31afb2
commit 04aca9e55b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 295 additions and 6 deletions

View File

@ -101,12 +101,22 @@ def llama_model_forward(
use_cuda_kernel = False
hidden_states = self.embed_tokens(input_tokens_ids)
if use_cuda_kernel and inputmetadata != torch.float32 and use_flash_attn2:
cu_seqlens = F.pad(torch.cumsum(sequence_lengths, dim=0, dtype=torch.torch.int32), (1, 0))
if use_cuda_kernel:
if inputmetadata != torch.float32 and use_flash_attn2:
cu_seqlens = F.pad(torch.cumsum(sequence_lengths, dim=0, dtype=torch.torch.int32), (1, 0))
hidden_dim = self._cos_cached.size(-1)
total_length = hidden_states.size(0)
cos = torch.empty((total_length, hidden_dim), dtype=self._cos_cached.dtype, device=self._cos_cached.device)
sin = torch.empty((total_length, hidden_dim), dtype=self._sin_cached.dtype, device=self._sin_cached.device)
inference_ops.get_cos_and_sin(
self._cos_cached, self._sin_cached, cos, sin, sequence_lengths, kv_seq_len, inputmetadata.is_prompts
)
cos_sin = (cos, sin)
else:
cu_seqlens = None
cos_sin = get_xine_cache(sequence_lengths, self._cos_cached, self._sin_cached, inputmetadata.is_prompts)
cos_sin = get_xine_cache(sequence_lengths, self._cos_cached, self._sin_cached, inputmetadata.is_prompts)
sm_scale = 1.0 / (inputmetadata.head_dim**0.5)

View File

@ -0,0 +1,215 @@
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "utils/vector_copy_utils.h"
#include "../common/micros.h"
#include "stdio.h"
template <typename scalar_t, bool Aligned, int VecSize>
__device__ void apply_cos_and_sin_memcopy(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int head_dim,
const int dest_offset_id,
const int src_offset_id
) {
int begin_id = threadIdx.x * VecSize;
for (; begin_id <= head_dim - VecSize; begin_id += blockDim.x){
copy_vector<scalar_t, VecSize>(cos + dest_offset_id + begin_id, cos_cache_ptr + src_offset_id + begin_id);
copy_vector<scalar_t, VecSize>(sin + dest_offset_id + begin_id, sin_cache_ptr + src_offset_id + begin_id);
}
if (!Aligned) {
for (; begin_id < head_dim; ++begin_id ) {
cos[dest_offset_id + begin_id] = cos_cache_ptr[src_offset_id + begin_id];
sin[dest_offset_id + begin_id] = sin_cache_ptr[src_offset_id + begin_id];
}
}
}
template <typename scalar_t, bool Aligned, int VecSize>
__global__ void apply_get_context_cos_and_sin_kernel(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int* __restrict__ cumsum_lengths,
const int batch_size,
const int head_dim
) {
int token_id = blockIdx.x;
if ( token_id >= sequence_lengths[blockIdx.y] ) {
return ;
}
int src_offset_id = token_id * head_dim;
int dest_offset_id = src_offset_id;
if (blockIdx.y > 0) {
dest_offset_id += cumsum_lengths[blockIdx.y - 1] * head_dim;
}
apply_cos_and_sin_memcopy<scalar_t, Aligned, VecSize>(
cos,
sin,
cos_cache_ptr,
sin_cache_ptr,
sequence_lengths,
head_dim,
dest_offset_id,
src_offset_id
);
}
template <typename scalar_t, bool Aligned, int VecSize>
__global__ void apply_get_decode_cos_and_sin_kernel(
scalar_t* __restrict__ cos,
scalar_t* __restrict__ sin,
const scalar_t* __restrict__ cos_cache_ptr,
const scalar_t* __restrict__ sin_cache_ptr,
const int* __restrict__ sequence_lengths,
const int batch_size,
const int head_dim
) {
int src_offset_id = ( sequence_lengths[blockIdx.y] - 1 ) * head_dim;
int dest_offset_id = blockIdx.y * head_dim;
apply_cos_and_sin_memcopy<scalar_t, Aligned, VecSize>(
cos,
sin,
cos_cache_ptr,
sin_cache_ptr,
sequence_lengths,
head_dim,
dest_offset_id,
src_offset_id
);
}
template<typename scalar_t>
void apply_get_cos_and_sin(
at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sin_cache, // [max_rotary_position, head_dim]
at::Tensor& cos, // [num_tokens, head_dim]
at::Tensor& sin, // [num_tokens, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch,
bool is_prompts
) {
int token_num = cos.size(0);
int head_dim = cos.size(1);
int batch_size = sequence_lengths.size(0);
at::Tensor cumsum_lengths;
int vec_size = get_vec_size<scalar_t>(cos);
bool aligned = true;
if (head_dim % vec_size != 0) {
aligned = false;
}
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
int block_size_y;
int block_size_x;
if (is_prompts) {
block_size_y = batch_size;
block_size_x = max_seq_len_in_batch;
// TODO: The cumsum operation can be fused into get_cos_and_sin kernel later on.
cumsum_lengths = torch::cumsum(sequence_lengths, 0, torch::kInt32);
}
else{
block_size_y = batch_size;
block_size_x = 1;
}
int thread_nums = (head_dim + vec_size - 1) / vec_size;
dim3 grid(block_size_x, block_size_y);
dim3 block(std::min(thread_nums, 512));
#define GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, __vec_size) \
do { \
if (is_prompts){ \
apply_get_context_cos_and_sin_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
cos.data_ptr<scalar_t>(), \
sin.data_ptr<scalar_t>(), \
cos_cache.data_ptr<scalar_t>(), \
sin_cache.data_ptr<scalar_t>(), \
sequence_lengths.data_ptr<int>(), \
cumsum_lengths.data_ptr<int>(), \
batch_size, \
head_dim \
); \
} \
else { \
apply_get_decode_cos_and_sin_kernel<scalar_t, __aligned, __vec_size><<<grid, block, 0, stream>>>( \
cos.data_ptr<scalar_t>(), \
sin.data_ptr<scalar_t>(), \
cos_cache.data_ptr<scalar_t>(), \
sin_cache.data_ptr<scalar_t>(), \
sequence_lengths.data_ptr<int>(), \
batch_size, \
head_dim \
); \
} \
} while(0)
#define GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(__aligned) \
do { \
switch (vec_size) { \
case 1: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 1); \
break; \
case 2: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 2); \
break; \
case 4: \
GET_COS_AND_SIN_KERNEL_LAUNCH(__aligned, 4); \
break; \
default: \
AT_ERROR("Unsupported vectorized size ", vec_size); \
break; \
} \
} while(0)
if (aligned) {
GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(true);
}
else {
GET_COS_AND_SIN_KERNEL_LAUNCH_VEC_SIZE_CASE(false);
}
AT_CUDA_CHECK(cudaGetLastError());
}
void get_cos_and_sin(
at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sin_cache, // [max_rotary_position, head_dim]
at::Tensor& cos, // [num_tokens, head_dim]
at::Tensor& sin, // [num_tokens, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch,
bool is_prompts
) {
DISPATCH_FLOAT_HALF_AND_BFLOAT(
cos.scalar_type(),
"get_cos_and_sin",
apply_get_cos_and_sin<scalar_t>(
cos_cache,
sin_cache,
cos,
sin,
sequence_lengths,
max_seq_len_in_batch,
is_prompts
);)
}

View File

@ -51,6 +51,13 @@ void fused_add_rms_layernorm(torch::Tensor& input, // [..., hidden_size]
torch::Tensor& weight, // [hidden_size]
float epsilon);
void get_cos_and_sin(at::Tensor& cos_cache, // [max_rotary_position, head_dim]
at::Tensor& sin_cache, // [max_rotary_position, head_dim]
at::Tensor& cos, // [num_tokens, head_dim]
at::Tensor& sin, // [num_tokens, head_dim]
at::Tensor& sequence_lengths, // [batch_size]
int max_seq_len_in_batch, bool is_prompts);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("decode_kv_cache_memcpy", &decode_kv_cache_memcpy,
"Copy the GPU memory of kvcache during the decode stage.");
@ -60,10 +67,10 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def(
"rotary_embedding_and_cache_copy", &rotary_embedding_and_cache_copy,
"performing Rotary Embedding-related calculations and KVCache Memcopy.");
"Performing Rotary Embedding-related calculations and KVCache Memcopy.");
m.def("rotary_embedding", &rotary_embedding,
"performing Rotary Embedding-related calculations.");
"Performing Rotary Embedding-related calculations.");
m.def("silu_and_mul", &silu_and_mul, "Silu with a following multiply");
@ -72,4 +79,7 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("fused_add_rms_layernorm", &fused_add_rms_layernorm,
"In-place fused Add and RMS Normalization.");
m.def("get_cos_and_sin", &get_cos_and_sin,
"Get cos and sin from the cache.");
}

View File

@ -16,6 +16,7 @@ class InferenceOpsCudaExtension(_CudaExtension):
"cuda/fused_rotary_emb_and_cache_kernel.cu",
"cuda/activation_kernel.cu",
"cuda/rms_layernorm_kernel.cu",
"cuda/get_cos_and_sin_kernel.cu",
]
]
return ret

View File

@ -0,0 +1,53 @@
import numpy as np
import pytest
import torch
from colossalai.kernel.kernel_loader import InferenceOpsLoader
from tests.test_infer.test_ops.triton.test_xine_copy import get_cos_sin
inference_ops = InferenceOpsLoader().load()
def numpy_equal(x, y):
x_numpy = x.detach().cpu().numpy()
y_numpy = y.detach().cpu().numpy()
np.testing.assert_equal(x_numpy, y_numpy)
@pytest.mark.parametrize("BATCH_SIZE", [4])
@pytest.mark.parametrize("MAX_SEQ_LEN", [64])
@pytest.mark.parametrize("HEAD_DIM", [64])
@pytest.mark.parametrize("dtype", [torch.float16, torch.float32])
def test_get_cos_and_sin(BATCH_SIZE, MAX_SEQ_LEN, HEAD_DIM, dtype):
MAX_TOTAL_TOKENS = BATCH_SIZE * MAX_SEQ_LEN
cos_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
sin_cache = torch.randn((MAX_TOTAL_TOKENS, HEAD_DIM), dtype=dtype, device="cuda")
lengths = torch.randint(2, MAX_SEQ_LEN, (BATCH_SIZE,), device="cuda").to(torch.int32)
max_seq_len_in_batch = lengths.max()
# prefill
cos_ref, sin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=True, dtype=dtype)
cos = torch.zeros_like(cos_ref)
sin = torch.zeros_like(sin_ref)
inference_ops.get_cos_and_sin(cos_cache, sin_cache, cos, sin, lengths, max_seq_len_in_batch, True)
numpy_equal(cos, cos_ref)
numpy_equal(sin, sin_ref)
# decoding
ncos_ref, nsin_ref = get_cos_sin(lengths, cos_cache, sin_cache, is_prompts=False, dtype=dtype)
cos = torch.zeros_like(ncos_ref)
sin = torch.zeros_like(nsin_ref)
inference_ops.get_cos_and_sin(cos_cache, sin_cache, cos, sin, lengths, max_seq_len_in_batch, False)
numpy_equal(cos, ncos_ref)
numpy_equal(sin, nsin_ref)
if __name__ == "__main__":
test_get_cos_and_sin(16, 4096, 256, torch.float16)