mirror of https://github.com/hpcaitech/ColossalAI
[zero] bucketized tensor cpu gpu copy (#368)
parent
44e4891f57
commit
00670c870e
|
@ -4,10 +4,6 @@ repos:
|
|||
hooks:
|
||||
- id: yapf
|
||||
args: ['--style=.style.yapf', '--parallel', '--in-place']
|
||||
- repo: https://github.com/pycqa/flake8
|
||||
rev: '4.0.1'
|
||||
hooks:
|
||||
- id: flake8
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v13.0.1
|
||||
hooks:
|
||||
|
|
|
@ -0,0 +1,3 @@
|
|||
from .bucket_tensor_copy import BucketizedTensorCopy
|
||||
|
||||
__all__ = ['BucketizedTensorCopy']
|
|
@ -0,0 +1,61 @@
|
|||
import torch
|
||||
from colossalai.zero.sharded_param import ShardedParamV2
|
||||
from colossalai.utils import get_current_device
|
||||
from typing import List
|
||||
|
||||
|
||||
class BucketizedTensorCopy(object):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
chunk_size: int,
|
||||
):
|
||||
r"""
|
||||
torch.nn.Parameter CPU (fp32) -> ShardedParam GPU (fp16)
|
||||
TODO(jiaruifang) The class is a little bit hardcoded
|
||||
I will make it more general later.
|
||||
"""
|
||||
|
||||
self.chunk_size = chunk_size
|
||||
self._offset = 0
|
||||
self._cpu_buffer = torch.empty(chunk_size, dtype=torch.float, device=torch.device("cpu:0"), pin_memory=True)
|
||||
self._cuda_buffer = torch.empty(chunk_size,
|
||||
dtype=torch.half,
|
||||
device=torch.device(f"cuda:{get_current_device()}"))
|
||||
|
||||
self._buffered_param_list: List[ShardedParamV2] = []
|
||||
self._numel_list = []
|
||||
|
||||
def copy(self, src_param: torch.nn.Parameter, target_param: ShardedParamV2):
|
||||
assert isinstance(target_param, ShardedParamV2)
|
||||
assert isinstance(src_param, torch.nn.Parameter)
|
||||
|
||||
numel = src_param.numel()
|
||||
|
||||
if self._offset + numel > self.chunk_size:
|
||||
self.flush()
|
||||
|
||||
assert src_param.data.device.type == 'cpu'
|
||||
self._cpu_buffer.narrow(0, self._offset, numel).copy_(src_param.data.view(-1))
|
||||
|
||||
self._buffered_param_list.append(target_param)
|
||||
self._numel_list.append(numel)
|
||||
|
||||
self._offset += numel
|
||||
|
||||
def flush(self):
|
||||
"""
|
||||
flush to cuda memory
|
||||
"""
|
||||
self._cuda_buffer.copy_(self._cpu_buffer)
|
||||
flush_offset = 0
|
||||
for sparam, numel in zip(self._buffered_param_list, self._numel_list):
|
||||
sparam.data.copy_payload(self._cpu_buffer.narrow(0, flush_offset, numel))
|
||||
flush_offset += numel
|
||||
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self._buffered_param_list = []
|
||||
self._numel_list = []
|
||||
self._offset = 0
|
|
@ -88,14 +88,19 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
self.zero_grad()
|
||||
return
|
||||
|
||||
# Write master param to p.data
|
||||
# assign master param pointers to p.data.
|
||||
# We will not trigger data copy here.
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
p.data = self.master_params[p]
|
||||
# Now p.data is sharded
|
||||
# So optimizer states are sharded naturally
|
||||
|
||||
ret = self.optim.step(*args, **kwargs)
|
||||
# Write master param to payload
|
||||
|
||||
# Copy master param data (fp32) to payload of col_attr (fp16)
|
||||
# TODO() improve efficiency by gathering tensors into a chunk and transfering
|
||||
# a chunk.
|
||||
for group in self.optim.param_groups:
|
||||
for p in group['params']:
|
||||
is_param_sharded = p.col_attr.data.is_sharded
|
||||
|
@ -108,7 +113,10 @@ class ShardedOptimizerV2(ColossalaiOptimizer):
|
|||
self.shard_strategy.shard([p.col_attr.data])
|
||||
# We have to use `copy_payload` instead of `reset_payload`
|
||||
# Since p.data is fp32 and p.col_attr.data is fp16
|
||||
|
||||
# TODO() optimize this line
|
||||
p.col_attr.data.copy_payload(p.data)
|
||||
|
||||
if not is_param_sharded:
|
||||
# We gather full fp16 param here
|
||||
self.shard_strategy.gather([p.col_attr.data])
|
||||
|
|
|
@ -14,7 +14,6 @@ class ShardedTensor(object):
|
|||
self.world_size = dist.get_world_size(self.process_group)
|
||||
self.local_rank = dist.get_rank(self.process_group)
|
||||
self._is_sharded = False
|
||||
self._payload = tensor
|
||||
|
||||
self._origin_shape = tensor.shape
|
||||
self._origin_numel = tensor.numel()
|
||||
|
@ -41,7 +40,7 @@ class ShardedTensor(object):
|
|||
return self._payload
|
||||
|
||||
def copy_payload(self, tensor):
|
||||
self._payload.copy_(tensor)
|
||||
self._payload.view(-1).copy_(tensor.view(-1))
|
||||
|
||||
def reset_payload(self, tensor):
|
||||
del self._payload
|
||||
|
|
|
@ -0,0 +1,39 @@
|
|||
from colossalai.utils.commons import BucketizedTensorCopy
|
||||
from colossalai.zero.sharded_param import ShardedParamV2
|
||||
from colossalai.utils import free_port
|
||||
import torch
|
||||
import colossalai
|
||||
|
||||
|
||||
def test_bucket_copy():
|
||||
# init dist env
|
||||
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||
|
||||
copyer = BucketizedTensorCopy(20)
|
||||
|
||||
shape_list = [(2, 3), (5), (8), (12)]
|
||||
src_param_list = []
|
||||
tgt_param_list = []
|
||||
for shape in shape_list:
|
||||
# on CPU
|
||||
src_param = torch.nn.Parameter(torch.randn(shape, dtype=torch.float, device=torch.device('cpu')))
|
||||
print(src_param)
|
||||
# on GPU
|
||||
tgt_param = ShardedParamV2(torch.nn.Parameter(torch.ones(shape, dtype=torch.half, device=torch.device('cuda'))))
|
||||
|
||||
src_param_list.append(src_param)
|
||||
tgt_param_list.append(tgt_param)
|
||||
|
||||
copyer.copy(src_param, tgt_param)
|
||||
|
||||
copyer.flush()
|
||||
|
||||
for src_param, tgt_param in zip(src_param_list, tgt_param_list):
|
||||
print(tgt_param.data.payload)
|
||||
diff = src_param.cpu().float() - tgt_param.data.payload.cpu().float()
|
||||
assert torch.allclose(src_param.cpu().float(), tgt_param.data.payload.cpu().float(), rtol=1e-03,
|
||||
atol=1e-03), f"diff {diff}"
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_bucket_copy()
|
Loading…
Reference in New Issue