mirror of https://github.com/hpcaitech/ColossalAI
[shardformer] fix pipeline forward error if custom layer distribution is used (#5189)
* Use self.[distribute_layers|get_stage_index] to exploit custom layer distribution * Change static methods for t5 layer distribution to member functions * Change static methods for whisper layer distribution to member functions * Replace whisper policy usage with self one * Fix test case to use non-static layer distribution methods * fix: fix typo --------- Co-authored-by: Wenhao Chen <cwher@outlook.com>pull/4309/merge
parent
e6707a6e8d
commit
00525f7772
|
@ -110,7 +110,7 @@ class MixtralPolicy(Policy):
|
|||
module = self.model.model
|
||||
|
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=model_cls
|
||||
|
|
|
@ -197,8 +197,7 @@ class Policy(ABC):
|
|||
"""
|
||||
return []
|
||||
|
||||
@staticmethod
|
||||
def distribute_layers(num_layers: int, num_stages: int) -> List[int]:
|
||||
def distribute_layers(self, num_layers: int, num_stages: int) -> List[int]:
|
||||
"""Divide layers into stages"""
|
||||
quotient = num_layers // num_stages
|
||||
remainder = num_layers % num_stages
|
||||
|
@ -213,8 +212,8 @@ class Policy(ABC):
|
|||
layers_per_stage[i] += 1
|
||||
return layers_per_stage
|
||||
|
||||
@staticmethod
|
||||
def get_stage_index(
|
||||
self,
|
||||
layers_per_stage: List[int],
|
||||
stage: int,
|
||||
num_model_chunks: int = 1,
|
||||
|
@ -242,4 +241,4 @@ class Policy(ABC):
|
|||
end_idx = num_layers_per_stage_accumulated[stage + model_chunk * num_stages + 1]
|
||||
stage_indices.append([start_idx, end_idx])
|
||||
|
||||
return stage_indices[0] if num_model_chunks == 1 else stage_indices
|
||||
return stage_indices[0] if num_model_chunks == 1 else stage_indices
|
||||
|
|
|
@ -84,17 +84,26 @@ class BertPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.query",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={
|
||||
"seq_parallel": use_sequence_parallel,
|
||||
"overlap": overlap,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.key",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={
|
||||
"seq_parallel": use_sequence_parallel,
|
||||
"overlap": overlap,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.value",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={
|
||||
"seq_parallel": use_sequence_parallel,
|
||||
"overlap": overlap,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="attention.self.dropout",
|
||||
|
@ -112,7 +121,10 @@ class BertPolicy(Policy):
|
|||
SubModuleReplacementDescription(
|
||||
suffix="intermediate.dense",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"seq_parallel": use_sequence_parallel, "overlap": overlap},
|
||||
kwargs={
|
||||
"seq_parallel": use_sequence_parallel,
|
||||
"overlap": overlap,
|
||||
},
|
||||
),
|
||||
SubModuleReplacementDescription(
|
||||
suffix="output.dense",
|
||||
|
@ -214,7 +226,9 @@ class BertPolicy(Policy):
|
|||
if self.shard_config.enable_tensor_parallelism:
|
||||
self.append_or_create_submodule_replacement(
|
||||
description=SubModuleReplacementDescription(
|
||||
suffix="decoder", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}
|
||||
suffix="decoder",
|
||||
target_module=col_nn.Linear1D_Col,
|
||||
kwargs={"gather_output": True},
|
||||
),
|
||||
policy=base_policy,
|
||||
target_key=BertLMPredictionHead,
|
||||
|
@ -241,7 +255,9 @@ class BertPolicy(Policy):
|
|||
"_load_from_state_dict": col_nn.ParallelModule._load_from_state_dict,
|
||||
}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=base_policy, target_key=BertLMPredictionHead
|
||||
description=method_replacement,
|
||||
policy=base_policy,
|
||||
target_key=BertLMPredictionHead,
|
||||
)
|
||||
return base_policy
|
||||
|
||||
|
@ -264,24 +280,32 @@ class BertPolicy(Policy):
|
|||
|
||||
if stage_manager.is_interleave:
|
||||
layers_per_stage = self.distribute_layers(
|
||||
len(module.encoder.layer), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
len(module.encoder.layer),
|
||||
stage_manager.num_stages * stage_manager.num_model_chunks,
|
||||
)
|
||||
stage_manager.stage_indices = Policy.get_stage_index(
|
||||
stage_manager.stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
num_stages=stage_manager.num_stages,
|
||||
)
|
||||
method_replacement = {
|
||||
"forward": partial(new_forward, stage_manager=stage_manager, shard_config=self.shard_config)
|
||||
"forward": partial(
|
||||
new_forward,
|
||||
stage_manager=stage_manager,
|
||||
shard_config=self.shard_config,
|
||||
)
|
||||
}
|
||||
|
||||
else:
|
||||
layers_per_stage = Policy.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
||||
new_forward,
|
||||
stage_manager=stage_manager,
|
||||
stage_index=stage_index,
|
||||
shard_config=self.shard_config,
|
||||
)
|
||||
}
|
||||
|
||||
|
@ -301,9 +325,10 @@ class BertPolicy(Policy):
|
|||
if stage_manager.is_interleave:
|
||||
assert stage_manager.num_model_chunks is not None
|
||||
layers_per_stage = self.distribute_layers(
|
||||
len(module.encoder.layer), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
len(module.encoder.layer),
|
||||
stage_manager.num_stages * stage_manager.num_model_chunks,
|
||||
)
|
||||
stage_indices = Policy.get_stage_index(
|
||||
stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
|
@ -320,7 +345,7 @@ class BertPolicy(Policy):
|
|||
layers_per_stage = self.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
|
||||
if stage_manager.is_first_stage():
|
||||
held_layers.append(module.embeddings)
|
||||
start_idx, end_idx = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
held_layers.extend(module.encoder.layer[start_idx:end_idx])
|
||||
if stage_manager.is_last_stage():
|
||||
held_layers.append(module.pooler)
|
||||
|
@ -336,7 +361,9 @@ class BertModelPolicy(BertPolicy):
|
|||
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(
|
||||
model_cls=BertModel, new_forward=BertPipelineForwards.bert_model_forward, policy=policy
|
||||
model_cls=BertModel,
|
||||
new_forward=BertPipelineForwards.bert_model_forward,
|
||||
policy=policy,
|
||||
)
|
||||
return policy
|
||||
|
||||
|
@ -399,7 +426,9 @@ class BertLMHeadModelPolicy(BertPolicy):
|
|||
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(
|
||||
model_cls=BertLMHeadModel, new_forward=BertPipelineForwards.bert_lm_head_model_forward, policy=policy
|
||||
model_cls=BertLMHeadModel,
|
||||
new_forward=BertPipelineForwards.bert_lm_head_model_forward,
|
||||
policy=policy,
|
||||
)
|
||||
return policy
|
||||
|
||||
|
@ -437,7 +466,9 @@ class BertForMaskedLMPolicy(BertPolicy):
|
|||
|
||||
if self.pipeline_stage_manager:
|
||||
self.set_pipeline_forward(
|
||||
model_cls=BertForMaskedLM, new_forward=BertPipelineForwards.bert_for_masked_lm_forward, policy=policy
|
||||
model_cls=BertForMaskedLM,
|
||||
new_forward=BertPipelineForwards.bert_for_masked_lm_forward,
|
||||
policy=policy,
|
||||
)
|
||||
return policy
|
||||
|
||||
|
|
|
@ -203,8 +203,8 @@ class BloomPolicy(Policy):
|
|||
else:
|
||||
module = self.model.transformer
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
||||
|
|
|
@ -204,8 +204,8 @@ class ChatGLMPolicy(Policy):
|
|||
else:
|
||||
module = self.model.transformer
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(module.num_layers, stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(module.num_layers, stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
||||
|
|
|
@ -161,8 +161,8 @@ class FalconPolicy(Policy):
|
|||
else:
|
||||
module = self.model.transformer
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
||||
|
|
|
@ -188,7 +188,7 @@ class GPT2Policy(Policy):
|
|||
layers_per_stage = self.distribute_layers(
|
||||
len(module.h), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
)
|
||||
stage_indices = Policy.get_stage_index(
|
||||
stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
|
@ -229,7 +229,7 @@ class GPT2Policy(Policy):
|
|||
layers_per_stage = self.distribute_layers(
|
||||
len(module.h), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
)
|
||||
stage_manager.stage_indices = Policy.get_stage_index(
|
||||
stage_manager.stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
|
@ -243,8 +243,8 @@ class GPT2Policy(Policy):
|
|||
)
|
||||
}
|
||||
else:
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward,
|
||||
|
|
|
@ -200,8 +200,8 @@ class GPTJPolicy(Policy):
|
|||
else:
|
||||
module = self.model.transformer
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.h), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward,
|
||||
|
|
|
@ -167,7 +167,7 @@ class LlamaPolicy(Policy):
|
|||
layers_per_stage = self.distribute_layers(
|
||||
len(module.layers), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
)
|
||||
stage_manager.stage_indices = Policy.get_stage_index(
|
||||
stage_manager.stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
|
@ -178,8 +178,8 @@ class LlamaPolicy(Policy):
|
|||
}
|
||||
|
||||
else:
|
||||
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward, stage_manager=stage_manager, stage_index=stage_index, shard_config=self.shard_config
|
||||
|
@ -207,7 +207,7 @@ class LlamaPolicy(Policy):
|
|||
layers_per_stage = self.distribute_layers(
|
||||
len(module.layers), stage_manager.num_stages * stage_manager.num_model_chunks
|
||||
)
|
||||
stage_indices = Policy.get_stage_index(
|
||||
stage_indices = self.get_stage_index(
|
||||
layers_per_stage,
|
||||
stage_manager.stage,
|
||||
num_model_chunks=stage_manager.num_model_chunks,
|
||||
|
|
|
@ -208,8 +208,8 @@ class OPTPolicy(Policy):
|
|||
else:
|
||||
module = self.model.model.decoder
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
new_forward,
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
from __future__ import annotations
|
||||
|
||||
import warnings
|
||||
from functools import partial
|
||||
from typing import Callable, Dict, List, Tuple
|
||||
|
@ -241,9 +243,8 @@ class T5BasePolicy(Policy):
|
|||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
@staticmethod
|
||||
def distribute_t5_layers(
|
||||
num_encoder_layers: int, num_decoder_layers: int, num_stages: int
|
||||
self, num_encoder_layers: int, num_decoder_layers: int, num_stages: int
|
||||
) -> Tuple[List[int], int]:
|
||||
"""
|
||||
Distribute t5 layers into stages when pipeline parallel is used.
|
||||
|
@ -261,7 +262,7 @@ class T5BasePolicy(Policy):
|
|||
|
||||
# in the case of T5EncoderModel, set decoder starting stage to num_stages since it doesn't exist
|
||||
if num_decoder_layers == 0:
|
||||
return Policy.distribute_layers(num_encoder_layers, num_stages), num_stages
|
||||
return self.distribute_layers(num_encoder_layers, num_stages), num_stages
|
||||
|
||||
# the number of stages distributed between encoder and decoder is optimized in this way:
|
||||
# num_encoder_stages = argmin(abs(num_encoder_layers / encoder_stages - num_decoder_layers / decoder_stages))
|
||||
|
@ -272,22 +273,21 @@ class T5BasePolicy(Policy):
|
|||
num_encoder_stages = np.argmin([objective(i) for i in range(1, num_stages)]) + 1
|
||||
num_decoder_stages = num_stages - num_encoder_stages
|
||||
|
||||
encoder_distribution = Policy.distribute_layers(num_encoder_layers, num_encoder_stages)
|
||||
decoder_distribution = Policy.distribute_layers(num_decoder_layers, num_decoder_stages)
|
||||
encoder_distribution = self.distribute_layers(num_encoder_layers, num_encoder_stages)
|
||||
decoder_distribution = self.distribute_layers(num_decoder_layers, num_decoder_stages)
|
||||
return encoder_distribution + decoder_distribution, num_encoder_stages
|
||||
|
||||
@staticmethod
|
||||
def get_t5_stage_index(
|
||||
layers_per_stage: List[int], stage: int, decoder_starting_stage: int
|
||||
self, layers_per_stage: List[int], stage: int, decoder_starting_stage: int
|
||||
) -> Tuple[bool, int, int]:
|
||||
"""
|
||||
Input the distribution of layers among stages, the current stage and the first stage of decoder.
|
||||
Return the starting/ending idx of layers in encoder/decoder
|
||||
"""
|
||||
if stage < decoder_starting_stage:
|
||||
return Policy.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
|
||||
return self.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
|
||||
else:
|
||||
return Policy.get_stage_index(layers_per_stage[decoder_starting_stage:], stage - decoder_starting_stage)
|
||||
return self.get_stage_index(layers_per_stage[decoder_starting_stage:], stage - decoder_starting_stage)
|
||||
|
||||
def get_held_layers(self) -> List[nn.Module]:
|
||||
"""Get pipeline layers for current stage."""
|
||||
|
@ -302,12 +302,10 @@ class T5BasePolicy(Policy):
|
|||
num_decoder_layers = len(decoder.block) if decoder else 0
|
||||
|
||||
held_layers = []
|
||||
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
layers_per_stage, decoder_starting_stage = self.distribute_t5_layers(
|
||||
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
||||
)
|
||||
start_idx, end_idx = T5BasePolicy.get_t5_stage_index(
|
||||
layers_per_stage, stage_manager.stage, decoder_starting_stage
|
||||
)
|
||||
start_idx, end_idx = self.get_t5_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
|
||||
|
||||
if stage_manager.stage < decoder_starting_stage:
|
||||
# current stage is in t5's encoder
|
||||
|
@ -343,10 +341,10 @@ class T5BasePolicy(Policy):
|
|||
num_encoder_layers = len(encoder.block)
|
||||
num_decoder_layers = len(decoder.block) if decoder else 0
|
||||
|
||||
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
layers_per_stage, decoder_starting_stage = self.distribute_t5_layers(
|
||||
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
||||
)
|
||||
stage_index = T5BasePolicy.get_t5_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
|
||||
stage_index = self.get_t5_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
|
||||
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
|
@ -386,7 +384,7 @@ class T5ModelPolicy(T5BasePolicy):
|
|||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
if stage_manager is not None and stage_manager.num_stages > 1:
|
||||
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
_, decoder_starting_stage = self.distribute_t5_layers(
|
||||
len(module.encoder.block), len(module.decoder.block), stage_manager.num_stages
|
||||
)
|
||||
|
||||
|
@ -434,7 +432,7 @@ class T5ForConditionalGenerationPolicy(T5BasePolicy):
|
|||
module = self.model
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
if stage_manager is not None and stage_manager.num_stages > 1:
|
||||
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
_, decoder_starting_stage = self.distribute_t5_layers(
|
||||
len(module.encoder.block), len(module.decoder.block), stage_manager.num_stages
|
||||
)
|
||||
|
||||
|
|
|
@ -149,8 +149,8 @@ class ViTPolicy(Policy):
|
|||
else:
|
||||
module = self.model.vit
|
||||
|
||||
layers_per_stage = Policy.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
layers_per_stage = self.distribute_layers(len(module.encoder.layer), stage_manager.num_stages)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {"forward": pipeline_forward(stage_manager=stage_manager, stage_index=stage_index)}
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=model_cls
|
||||
|
|
|
@ -292,9 +292,8 @@ class WhisperPolicy(Policy):
|
|||
def postprocess(self):
|
||||
return self.model
|
||||
|
||||
@staticmethod
|
||||
def distribute_whisper_layers(
|
||||
num_encoder_layers: int, num_decoder_layers: int, num_stages: int
|
||||
self, num_encoder_layers: int, num_decoder_layers: int, num_stages: int
|
||||
) -> Tuple[List[int], int]:
|
||||
"""
|
||||
Distribute whisper layers into stages when pipeline parallel is used.
|
||||
|
@ -312,7 +311,7 @@ class WhisperPolicy(Policy):
|
|||
|
||||
# in the case of whisperEncoderModel, set decoder starting stage to num_stages since it doesn't exist
|
||||
if num_decoder_layers == 0:
|
||||
return Policy.distribute_layers(num_encoder_layers, num_stages), num_stages
|
||||
return self.distribute_layers(num_encoder_layers, num_stages), num_stages
|
||||
|
||||
# the number of stages distributed between encoder and decoder is optimized in this way:
|
||||
# num_encoder_stages = argmin(abs(num_encoder_layers / encoder_stages - num_decoder_layers / decoder_stages))
|
||||
|
@ -323,22 +322,21 @@ class WhisperPolicy(Policy):
|
|||
num_encoder_stages = np.argmin([objective(i) for i in range(1, num_stages)]) + 1
|
||||
num_decoder_stages = num_stages - num_encoder_stages
|
||||
|
||||
encoder_distribution = Policy.distribute_layers(num_encoder_layers, num_encoder_stages)
|
||||
decoder_distribution = Policy.distribute_layers(num_decoder_layers, num_decoder_stages)
|
||||
encoder_distribution = self.distribute_layers(num_encoder_layers, num_encoder_stages)
|
||||
decoder_distribution = self.distribute_layers(num_decoder_layers, num_decoder_stages)
|
||||
return encoder_distribution + decoder_distribution, num_encoder_stages
|
||||
|
||||
@staticmethod
|
||||
def get_whisper_stage_index(
|
||||
layers_per_stage: List[int], stage: int, decoder_starting_stage: int
|
||||
self, layers_per_stage: List[int], stage: int, decoder_starting_stage: int
|
||||
) -> Tuple[bool, int, int]:
|
||||
"""
|
||||
Input the distribution of layers among stages, the current stage and the first stage of decoder.
|
||||
Return the starting/ending idx of layers in encoder/decoder
|
||||
"""
|
||||
if stage < decoder_starting_stage:
|
||||
return Policy.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
|
||||
return self.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
|
||||
else:
|
||||
return Policy.get_stage_index(
|
||||
return self.get_stage_index(
|
||||
layers_per_stage[decoder_starting_stage:],
|
||||
stage - decoder_starting_stage,
|
||||
)
|
||||
|
@ -369,12 +367,10 @@ class WhisperPolicy(Policy):
|
|||
num_decoder_layers = 0
|
||||
|
||||
held_layers = []
|
||||
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
||||
layers_per_stage, decoder_starting_stage = self.distribute_whisper_layers(
|
||||
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
||||
)
|
||||
start_idx, end_idx = WhisperPolicy.get_whisper_stage_index(
|
||||
layers_per_stage, stage_manager.stage, decoder_starting_stage
|
||||
)
|
||||
start_idx, end_idx = self.get_whisper_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
|
||||
|
||||
if stage_manager.stage < decoder_starting_stage:
|
||||
# current stage is in whisper's encoder
|
||||
|
@ -424,12 +420,10 @@ class WhisperPolicy(Policy):
|
|||
else:
|
||||
num_decoder_layers = 0
|
||||
|
||||
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
||||
layers_per_stage, decoder_starting_stage = self.distribute_whisper_layers(
|
||||
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
||||
)
|
||||
stage_index = WhisperPolicy.get_whisper_stage_index(
|
||||
layers_per_stage, stage_manager.stage, decoder_starting_stage
|
||||
)
|
||||
stage_index = self.get_whisper_stage_index(layers_per_stage, stage_manager.stage, decoder_starting_stage)
|
||||
|
||||
method_replacement = {
|
||||
"forward": partial(
|
||||
|
@ -511,7 +505,7 @@ class WhisperForConditionalGenerationPolicy(WhisperPolicy):
|
|||
|
||||
stage_manager = self.pipeline_stage_manager
|
||||
if stage_manager is not None and stage_manager.num_stages > 1:
|
||||
_, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
||||
_, decoder_starting_stage = self.distribute_whisper_layers(
|
||||
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
||||
)
|
||||
shared_params = []
|
||||
|
|
|
@ -98,11 +98,11 @@ class OpenMoePolicy(Policy):
|
|||
module = self.model.model
|
||||
|
||||
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
|
||||
stage_index = Policy.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
stage_index = self.get_stage_index(layers_per_stage, stage_manager.stage)
|
||||
method_replacement = {"forward": partial(new_forward, stage_manager=stage_manager, stage_index=stage_index)}
|
||||
self.append_or_create_method_replacement(description=method_replacement,
|
||||
policy=policy,
|
||||
target_key=model_cls)
|
||||
self.append_or_create_method_replacement(
|
||||
description=method_replacement, policy=policy, target_key=model_cls
|
||||
)
|
||||
|
||||
return
|
||||
|
||||
|
@ -126,12 +126,9 @@ class OpenMoePolicy(Policy):
|
|||
held_layers.append(module.norm)
|
||||
|
||||
return held_layers
|
||||
|
||||
@staticmethod
|
||||
def distribute_layers(num_layers: int, num_stages: int) -> List[int]:
|
||||
"""Divide layers into stages
|
||||
|
||||
"""
|
||||
def distribute_layers(self, num_layers: int, num_stages: int) -> List[int]:
|
||||
"""Divide layers into stages"""
|
||||
if num_layers == 24 and num_stages == 4:
|
||||
return [7, 7, 7, 3]
|
||||
elif num_layers == 24 and num_stages == 2:
|
||||
|
@ -142,7 +139,7 @@ class OpenMoePolicy(Policy):
|
|||
return [8, 4]
|
||||
else:
|
||||
print(f"num_layers: {num_layers}, num_stages: {num_stages} not optimized, use origin pp policy")
|
||||
return Policy.distribute_layers(num_layers, num_stages)
|
||||
return super().distribute_layers(num_layers, num_stages)
|
||||
|
||||
|
||||
class OpenMoeModelPolicy(OpenMoePolicy):
|
||||
|
|
|
@ -83,7 +83,7 @@ def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[
|
|||
|
||||
@parameterize("init_method", ["none", "lazy"])
|
||||
def check_3d_plugin(init_method: str = "none", early_stop: bool = True):
|
||||
"""check gemini plugin over model zoo
|
||||
"""check hybrid plugin over model zoo
|
||||
|
||||
Args:
|
||||
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
||||
|
@ -260,7 +260,7 @@ def run_grad_acc_test(test_args):
|
|||
origin_model, origin_optimizer, dataloader=dataloader
|
||||
)
|
||||
for p1, p2 in zip(model.unwrap().parameters(), origin_model.unwrap().parameters()):
|
||||
assert_close(p1.to(p2.dtype), p2, atol=1e-2, rtol=1e-2)
|
||||
assert_close(p1.to(p2.dtype), p2, atol=1e-2, rtol=1e-2)
|
||||
|
||||
|
||||
def run_dist(rank, world_size, port, early_stop: bool = True):
|
||||
|
@ -271,9 +271,9 @@ def run_dist(rank, world_size, port, early_stop: bool = True):
|
|||
|
||||
|
||||
@rerun_if_address_is_in_use()
|
||||
def test_gemini_plugin(early_stop: bool = True):
|
||||
def test_3d_plugin(early_stop: bool = True):
|
||||
spawn(run_dist, 4, early_stop=early_stop)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_gemini_plugin(early_stop=False)
|
||||
test_3d_plugin(early_stop=False)
|
||||
|
|
|
@ -10,9 +10,12 @@ def test_t5_pipeline_distribution():
|
|||
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
|
||||
}
|
||||
|
||||
policy = T5BasePolicy()
|
||||
for i in range(num_test_cases):
|
||||
_, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
|
||||
_, decoder_starting_stage = policy.distribute_t5_layers(
|
||||
test_dict["num_encoder_layers"][i],
|
||||
test_dict["num_decoder_layers"][i],
|
||||
test_dict["num_stages"][i],
|
||||
)
|
||||
assert test_dict["decoder_starting_stage"][i] == decoder_starting_stage
|
||||
|
||||
|
@ -32,14 +35,15 @@ def test_t5_pipeline_layers():
|
|||
}
|
||||
|
||||
for i in range(num_test_cases):
|
||||
layers_per_stage, decoder_starting_stage = T5BasePolicy.distribute_t5_layers(
|
||||
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
|
||||
policy = T5BasePolicy()
|
||||
layers_per_stage, decoder_starting_stage = policy.distribute_t5_layers(
|
||||
test_dict["num_encoder_layers"][i],
|
||||
test_dict["num_decoder_layers"][i],
|
||||
test_dict["num_stages"][i],
|
||||
)
|
||||
|
||||
for stage in range(test_dict["num_stages"][i]):
|
||||
start_idx, end_idx = test_dict["layers_per_stage"][i][stage]
|
||||
predicted_start, predicted_end = T5BasePolicy.get_t5_stage_index(
|
||||
layers_per_stage, stage, decoder_starting_stage
|
||||
)
|
||||
predicted_start, predicted_end = policy.get_t5_stage_index(layers_per_stage, stage, decoder_starting_stage)
|
||||
assert start_idx == predicted_start
|
||||
assert end_idx == predicted_end
|
||||
|
|
|
@ -10,9 +10,12 @@ def test_whisper_pipeline_distribution():
|
|||
"decoder_starting_stage": [1, 1, 2, 2, 3, 1, 5, 2],
|
||||
}
|
||||
|
||||
policy = WhisperPolicy()
|
||||
for i in range(num_test_cases):
|
||||
_, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
||||
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
|
||||
_, decoder_starting_stage = policy.distribute_whisper_layers(
|
||||
test_dict["num_encoder_layers"][i],
|
||||
test_dict["num_decoder_layers"][i],
|
||||
test_dict["num_stages"][i],
|
||||
)
|
||||
assert test_dict["decoder_starting_stage"][i] == decoder_starting_stage
|
||||
|
||||
|
@ -31,14 +34,17 @@ def test_whisper_pipeline_layers():
|
|||
],
|
||||
}
|
||||
|
||||
policy = WhisperPolicy()
|
||||
for i in range(num_test_cases):
|
||||
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
||||
test_dict["num_encoder_layers"][i], test_dict["num_decoder_layers"][i], test_dict["num_stages"][i]
|
||||
layers_per_stage, decoder_starting_stage = policy.distribute_whisper_layers(
|
||||
test_dict["num_encoder_layers"][i],
|
||||
test_dict["num_decoder_layers"][i],
|
||||
test_dict["num_stages"][i],
|
||||
)
|
||||
|
||||
for stage in range(test_dict["num_stages"][i]):
|
||||
start_idx, end_idx = test_dict["layers_per_stage"][i][stage]
|
||||
predicted_start, predicted_end = WhisperPolicy.get_whisper_stage_index(
|
||||
predicted_start, predicted_end = policy.get_whisper_stage_index(
|
||||
layers_per_stage, stage, decoder_starting_stage
|
||||
)
|
||||
assert start_idx == predicted_start
|
||||
|
|
|
@ -38,9 +38,10 @@ def check_dist_crossentropy(rank, world_size, port, ignore_index):
|
|||
org_loss, dist_loss, atol=1e-5
|
||||
), f"dist cross entropy loss is not equal to orgin loss\n{org_loss}\n{dist_loss}"
|
||||
|
||||
|
||||
target_grad = torch.chunk(pred.grad, world_size, dim=-1)[rank]
|
||||
assert torch.allclose(target_grad, dist_pred.grad), f"dist grad is not equal to orgin grad\n{target_grad}\n{dist_pred.grad}"
|
||||
assert torch.allclose(
|
||||
target_grad, dist_pred.grad
|
||||
), f"dist grad is not equal to orgin grad\n{target_grad}\n{dist_pred.grad}"
|
||||
|
||||
|
||||
@pytest.mark.dist
|
||||
|
|
Loading…
Reference in New Issue