mirror of https://github.com/hpcaitech/ColossalAI
[memory] add model data tensor moving api (#503)
parent
65ad47c35c
commit
0035b7be07
|
@ -8,7 +8,7 @@ from .common import (clip_grad_norm_fp32, conditional_context, copy_tensor_paral
|
||||||
sync_model_param)
|
sync_model_param)
|
||||||
from .data_sampler import DataParallelSampler, get_dataloader
|
from .data_sampler import DataParallelSampler, get_dataloader
|
||||||
from .gradient_accumulation import accumulate_gradient
|
from .gradient_accumulation import accumulate_gradient
|
||||||
from .memory import report_memory_usage
|
from .memory_utils.memory_monitor import report_memory_usage
|
||||||
from .timer import MultiTimer, Timer
|
from .timer import MultiTimer, Timer
|
||||||
from .tensor_detector import TensorDetector
|
from .tensor_detector import TensorDetector
|
||||||
|
|
||||||
|
|
|
@ -1,9 +0,0 @@
|
||||||
import torch
|
|
||||||
from colossalai.utils import get_current_device
|
|
||||||
|
|
||||||
|
|
||||||
def col_cuda_memory_capacity():
|
|
||||||
"""
|
|
||||||
Get cuda memory capacity of the current cuda.
|
|
||||||
"""
|
|
||||||
return torch.cuda.get_device_properties(get_current_device()).total_memory
|
|
|
@ -1,19 +0,0 @@
|
||||||
import torch
|
|
||||||
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
|
||||||
|
|
||||||
|
|
||||||
def col_move_to_cpu(t: torch.Tensor):
|
|
||||||
assert isinstance(t, torch.Tensor)
|
|
||||||
if t.device.type == 'cpu':
|
|
||||||
return
|
|
||||||
|
|
||||||
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t)
|
|
||||||
t.data = t.data.cpu()
|
|
||||||
|
|
||||||
|
|
||||||
def col_modeldata_allocate(device: torch.device) -> torch.Tensor:
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
def col_modeldata_release(t: torch.Tensor):
|
|
||||||
pass
|
|
|
@ -1,11 +0,0 @@
|
||||||
from colossalai.zero.sharded_param import ShardedTensor
|
|
||||||
from typing import Union
|
|
||||||
import torch
|
|
||||||
|
|
||||||
|
|
||||||
def col_tensor_mem_usage(t: Union[torch.Tensor, ShardedTensor]) -> int:
|
|
||||||
if isinstance(t, ShardedTensor):
|
|
||||||
target = t.payload
|
|
||||||
else:
|
|
||||||
target = t
|
|
||||||
return target.numel() * target.element_size()
|
|
|
@ -1,6 +1,15 @@
|
||||||
from colossalai.context.singleton_meta import SingletonMeta
|
from colossalai.context.singleton_meta import SingletonMeta
|
||||||
from colossalai.utils.memory_tracer.commons import col_tensor_mem_usage
|
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||||
import torch
|
import torch
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
|
||||||
|
def _col_tensor_mem_usage(t: Union[torch.Tensor, ShardedTensor]) -> int:
|
||||||
|
if isinstance(t, ShardedTensor):
|
||||||
|
target = t.payload
|
||||||
|
else:
|
||||||
|
target = t
|
||||||
|
return target.numel() * target.element_size()
|
||||||
|
|
||||||
|
|
||||||
class ModelDataTracer(metaclass=SingletonMeta):
|
class ModelDataTracer(metaclass=SingletonMeta):
|
||||||
|
@ -16,12 +25,12 @@ class ModelDataTracer(metaclass=SingletonMeta):
|
||||||
|
|
||||||
def add_tensor(self, t: torch.Tensor):
|
def add_tensor(self, t: torch.Tensor):
|
||||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer add_tensor() should accept a torch.Tensor"
|
assert isinstance(t, torch.Tensor), f"ModelDataTracer add_tensor() should accept a torch.Tensor"
|
||||||
mem_use = col_tensor_mem_usage(t)
|
mem_use = _col_tensor_mem_usage(t)
|
||||||
self._cuda_usage += mem_use
|
self._cuda_usage += mem_use
|
||||||
|
|
||||||
def delete_tensor(self, t: torch.Tensor):
|
def delete_tensor(self, t: torch.Tensor):
|
||||||
assert isinstance(t, torch.Tensor), f"ModelDataTracer delete_tensor() should accept a torch.Tensor"
|
assert isinstance(t, torch.Tensor), f"ModelDataTracer delete_tensor() should accept a torch.Tensor"
|
||||||
mem_use = col_tensor_mem_usage(t)
|
mem_use = _col_tensor_mem_usage(t)
|
||||||
self._cuda_usage -= mem_use
|
self._cuda_usage -= mem_use
|
||||||
|
|
||||||
@property
|
@property
|
||||||
|
|
|
@ -63,5 +63,5 @@ def report_memory_usage(message, logger=None, report_cpu=False):
|
||||||
logger.info(full_log)
|
logger.info(full_log)
|
||||||
|
|
||||||
# get the peak memory to report correct data, so reset the counter for the next call
|
# get the peak memory to report correct data, so reset the counter for the next call
|
||||||
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
||||||
torch.cuda.reset_peak_memory_stats()
|
torch.cuda.reset_peak_memory_stats()
|
|
@ -0,0 +1,59 @@
|
||||||
|
import torch
|
||||||
|
from colossalai.utils import get_current_device
|
||||||
|
from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor
|
||||||
|
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||||
|
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
|
||||||
|
def colo_cuda_memory_capacity():
|
||||||
|
"""
|
||||||
|
Get cuda memory capacity of the current cuda.
|
||||||
|
"""
|
||||||
|
return torch.cuda.get_device_properties(get_current_device()).total_memory
|
||||||
|
|
||||||
|
|
||||||
|
def colo_model_data_tensor_move(src_t: Union[ShardedTensor, torch.Tensor], tgt_t: Union[ShardedTensor,
|
||||||
|
torch.Tensor]) -> None:
|
||||||
|
"""
|
||||||
|
A colossal API for model data tensor move.
|
||||||
|
The src and target tensors could be resident on both CPU and GPU.
|
||||||
|
|
||||||
|
NOTE() The source tensor payload will be removed after this function.
|
||||||
|
|
||||||
|
The function will record the communication volume between CPU and GPU.
|
||||||
|
Args:
|
||||||
|
t_src (Union[ShardedTensor, torch.Tensor]): source tensor
|
||||||
|
tgt_t (Union[ShardedTensor, torch.Tensor]): target tensor
|
||||||
|
"""
|
||||||
|
if isinstance(src_t, ShardedTensor):
|
||||||
|
src_t_payload = src_t.payload
|
||||||
|
else:
|
||||||
|
src_t_payload = src_t.data
|
||||||
|
src_dev = src_t_payload.device
|
||||||
|
if isinstance(tgt_t, ShardedTensor):
|
||||||
|
tgt_t_payload = tgt_t.payload
|
||||||
|
else:
|
||||||
|
tgt_t_payload = tgt_t.data
|
||||||
|
tgt_dev = tgt_t_payload.device
|
||||||
|
|
||||||
|
if src_dev.type == 'cuda' and tgt_dev.type == 'cpu':
|
||||||
|
GLOBAL_MODEL_DATA_TRACER.delete_tensor(src_t_payload)
|
||||||
|
elif src_dev.type == 'cpu' and tgt_dev.type == 'cuda':
|
||||||
|
GLOBAL_MODEL_DATA_TRACER.add_tensor(tgt_t_payload)
|
||||||
|
tgt_t_payload.copy_(src_t_payload)
|
||||||
|
|
||||||
|
# remove payload of src_t
|
||||||
|
if isinstance(src_t, ShardedTensor):
|
||||||
|
src_t.reset_payload(torch.tensor([], device=src_dev, dtype=src_t_payload.dtype))
|
||||||
|
else:
|
||||||
|
src_t.data = torch.tensor([], device=src_dev, dtype=src_t_payload.dtype)
|
||||||
|
|
||||||
|
|
||||||
|
def colo_model_data_move_to_cpu(t: torch.Tensor):
|
||||||
|
assert isinstance(t, torch.Tensor)
|
||||||
|
if t.device.type == 'cpu':
|
||||||
|
return
|
||||||
|
|
||||||
|
GLOBAL_MODEL_DATA_TRACER.delete_tensor(t)
|
||||||
|
t.data = t.data.cpu()
|
|
@ -11,8 +11,7 @@ from colossalai.engine.ophooks import register_ophooks_recursively
|
||||||
from colossalai.engine.ophooks.zero_hook import ZeroHook
|
from colossalai.engine.ophooks.zero_hook import ZeroHook
|
||||||
from colossalai.engine.paramhooks import BaseParamHookMgr
|
from colossalai.engine.paramhooks import BaseParamHookMgr
|
||||||
from colossalai.logging import get_dist_logger
|
from colossalai.logging import get_dist_logger
|
||||||
from colossalai.utils.commons.memory import col_cuda_memory_capacity
|
from colossalai.utils.memory_utils.utils import colo_model_data_move_to_cpu, colo_cuda_memory_capacity
|
||||||
from colossalai.utils.memory_tracer.allocator import col_move_to_cpu
|
|
||||||
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
from colossalai.utils.memory_tracer.memstats_collector import MemStatsCollector
|
||||||
from colossalai.zero.shard_utils import BaseShardStrategy
|
from colossalai.zero.shard_utils import BaseShardStrategy
|
||||||
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
from colossalai.zero.sharded_model.reduce_scatter import ReduceScatterBucketer
|
||||||
|
@ -152,7 +151,7 @@ class ShardedModelV2(nn.Module):
|
||||||
# the way to calculate margin space is based on the assumption that
|
# the way to calculate margin space is based on the assumption that
|
||||||
# model data is fixed in cuda during training.
|
# model data is fixed in cuda during training.
|
||||||
# cuda margin space can be used to store OS.
|
# cuda margin space can be used to store OS.
|
||||||
self._cuda_margin_space = col_cuda_memory_capacity() - max(self._memstats_collector._overall_cuda)
|
self._cuda_margin_space = colo_cuda_memory_capacity() - max(self._memstats_collector._overall_cuda)
|
||||||
|
|
||||||
self._iter_cnter += 1
|
self._iter_cnter += 1
|
||||||
|
|
||||||
|
@ -201,7 +200,7 @@ class ShardedModelV2(nn.Module):
|
||||||
else:
|
else:
|
||||||
grad = cast_tensor_to_fp32(p.col_attr.fp16_grad)
|
grad = cast_tensor_to_fp32(p.col_attr.fp16_grad)
|
||||||
if p.col_attr.offload_grad:
|
if p.col_attr.offload_grad:
|
||||||
col_move_to_cpu(grad)
|
colo_model_data_move_to_cpu(grad)
|
||||||
if p.col_attr.fp32_grad is not None:
|
if p.col_attr.fp32_grad is not None:
|
||||||
assert not self.reuse_fp16_shard, 'Gradien accumulation is not supported when reuse_fp16_shard=True'
|
assert not self.reuse_fp16_shard, 'Gradien accumulation is not supported when reuse_fp16_shard=True'
|
||||||
p.col_attr.fp32_grad.add_(grad.view_as(p.col_attr.fp32_grad))
|
p.col_attr.fp32_grad.add_(grad.view_as(p.col_attr.fp32_grad))
|
||||||
|
|
|
@ -25,8 +25,18 @@ class OptimState(Enum):
|
||||||
|
|
||||||
|
|
||||||
class ShardedOptimizerV2(ColossalaiOptimizer):
|
class ShardedOptimizerV2(ColossalaiOptimizer):
|
||||||
"""A wrapper for optimizer. `ShardedOptimizerV2` and `ShardedModelV2` implement Zero Redundancy Optimizer (ZeRO) stage 3.
|
"""A wrapper for optimizer. `ShardedOptimizerV2` and `ShardedModelV2` implement Zero Redundancy Optimizer (ZeRO).
|
||||||
You must use `ShardedOptimizerV2` with `ShardedModelV2`.
|
By default the ZeRO optimizer stage 3 offload Optimizer States on CPU.
|
||||||
|
We apply the Device-aware Operator Placement technique for OS placement from the following paper.
|
||||||
|
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
|
||||||
|
https://arxiv.org/abs/2108.05818
|
||||||
|
GPU margin space is the remaining space after removing peak non-model data from the overall GPU memory,
|
||||||
|
which is detected by a runtime memory tracer.
|
||||||
|
We place as many OS chunks in the margin space as possible.
|
||||||
|
The size of margin space can be controlled by `gpu_margin_mem_ratio`
|
||||||
|
If it is set as 0.0, it is the same as classical ZeRO optimizer.
|
||||||
|
|
||||||
|
NOTE() You must use `ShardedOptimizerV2` with `ShardedModelV2`.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
sharded_model (ShardedModelV2): A sharded model initialized by class ShardedModelV2. The optimizer will use the
|
sharded_model (ShardedModelV2): A sharded model initialized by class ShardedModelV2. The optimizer will use the
|
||||||
|
|
|
@ -0,0 +1,49 @@
|
||||||
|
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
||||||
|
from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move
|
||||||
|
from colossalai.utils import free_port
|
||||||
|
|
||||||
|
from colossalai.zero.sharded_param import ShardedTensor
|
||||||
|
import colossalai
|
||||||
|
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from functools import partial
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
|
||||||
|
def run_tensor_move(rank):
|
||||||
|
colossalai.launch(config={}, rank=0, world_size=1, host='localhost', port=free_port(), backend='nccl')
|
||||||
|
|
||||||
|
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0)
|
||||||
|
|
||||||
|
src_t = torch.ones(2, 3).cuda()
|
||||||
|
GLOBAL_MODEL_DATA_TRACER.add_tensor(src_t)
|
||||||
|
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24)
|
||||||
|
tgt_t = torch.zeros(2, 3)
|
||||||
|
|
||||||
|
colo_model_data_tensor_move(src_t, tgt_t)
|
||||||
|
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 0)
|
||||||
|
assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||||
|
|
||||||
|
src_t = torch.ones(2, 3)
|
||||||
|
tgt_t = torch.zeros(2, 3).cuda().half()
|
||||||
|
colo_model_data_tensor_move(src_t, tgt_t)
|
||||||
|
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 12), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}"
|
||||||
|
# the src_t has been removed
|
||||||
|
assert (src_t.numel() == 0)
|
||||||
|
assert (torch.sum(tgt_t) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||||
|
|
||||||
|
src_t = ShardedTensor(torch.ones(2, 3))
|
||||||
|
tgt_t = ShardedTensor(torch.zeros(2, 3).cuda().half())
|
||||||
|
colo_model_data_tensor_move(src_t, tgt_t)
|
||||||
|
assert (GLOBAL_MODEL_DATA_TRACER.cuda_usage == 24), f"cuda usage {GLOBAL_MODEL_DATA_TRACER.cuda_usage}"
|
||||||
|
assert (torch.sum(tgt_t.payload) == 6.0), f"{torch.sum(tgt_t.payload)} vs. 6.0"
|
||||||
|
|
||||||
|
|
||||||
|
def test_tensor_move():
|
||||||
|
mp.spawn(run_tensor_move, nprocs=1)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
test_tensor_move()
|
Loading…
Reference in New Issue