ColossalAI/colossalai/nn/layer/parallel_1d/_utils.py

185 lines
4.8 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import torch
import torch.distributed as dist
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from ..utils import divide
def set_parallel_input(input_parallel: bool):
env.parallel_input_1d = input_parallel
def get_parallel_input():
return env.parallel_input_1d
2021-10-28 16:21:23 +00:00
def vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank):
index_f = rank * per_partition_vocab_size
index_l = index_f + per_partition_vocab_size
return index_f, index_l
def vocab_range_from_global_vocab_size(global_vocab_size, rank, world_size):
per_partition_vocab_size = divide(global_vocab_size, world_size)
return vocab_range_from_per_partition_vocab_size(per_partition_vocab_size, rank)
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
def _reduce(input_, parallel_mode):
# skip if only one rank involved
if gpc.get_world_size(parallel_mode) == 1:
return input_
dist.all_reduce(input_, group=gpc.get_group(parallel_mode))
return input_
def _split(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# Split along last dimension.
dim_size = input_.size(dim)
assert dim_size % world_size == 0, \
f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \
f'cannot split tensor evenly'
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
rank = gpc.get_local_rank(parallel_mode)
output = tensor_list[rank].contiguous()
return output
def _gather(input_, parallel_mode, dim=-1):
# skip if only one rank involved
world_size = gpc.get_world_size(parallel_mode)
if world_size == 1:
return input_
# all gather
rank = gpc.get_local_rank(parallel_mode)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=gpc.get_group(parallel_mode))
# concat
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
class _ReduceGrad(torch.autograd.Function):
"""
Pass the input to the model parallel region.
2022-03-25 05:02:39 +00:00
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
2022-03-10 09:15:59 +00:00
@staticmethod
def symbolic(graph, input_):
return input_
@staticmethod
def forward(ctx, input_, parallel_mode):
ctx.mode = parallel_mode
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output, ctx.mode), None
class _ReduceInput(torch.autograd.Function):
"""
All-reduce the input from the model parallel region.
2022-03-25 05:02:39 +00:00
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
2022-03-10 09:15:59 +00:00
@staticmethod
def symbolic(graph, input_):
return _reduce(input_)
@staticmethod
def forward(ctx, input_, parallel_mode):
return _reduce(input_, parallel_mode)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
2022-03-25 05:02:39 +00:00
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
2022-03-10 09:15:59 +00:00
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _split(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.mode, ctx.dim), None, None
class _GatherForwardSplitBackward(torch.autograd.Function):
2022-03-25 05:02:39 +00:00
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
2022-03-10 09:15:59 +00:00
@staticmethod
def symbolic(graph, input_):
return _gather(input_)
@staticmethod
def forward(ctx, input_, parallel_mode, dim):
ctx.mode = parallel_mode
ctx.dim = dim
return _gather(input_, parallel_mode, dim)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.mode, ctx.dim), None, None
def reduce_grad(input_, parallel_mode):
return _ReduceGrad.apply(input_, parallel_mode)
def reduce_input(input_, parallel_mode):
return _ReduceInput.apply(input_, parallel_mode)
def split_forward_gather_backward(input_, parallel_mode, dim):
return _SplitForwardGatherBackward.apply(input_, parallel_mode, dim)
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
def gather_forward_split_backward(input_, parallel_mode, dim):
return _GatherForwardSplitBackward.apply(input_, parallel_mode, dim)