mirror of https://github.com/hpcaitech/ColossalAI
54 lines
1.2 KiB
Python
54 lines
1.2 KiB
Python
|
from functools import partial
|
||
|
from typing import List, Tuple
|
||
|
|
||
|
import pytest
|
||
|
import torch
|
||
|
import torch.multiprocessing as mp
|
||
|
|
||
|
try:
|
||
|
from timm.models.vision_transformer import vit_large_patch16_384 as vit
|
||
|
MODELS = [vit]
|
||
|
HAS_REPO = True
|
||
|
except:
|
||
|
MODELS = []
|
||
|
HAS_REPO = False
|
||
|
|
||
|
from test_autochunk_vit_utils import run_test
|
||
|
|
||
|
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
|
||
|
|
||
|
|
||
|
def get_data() -> Tuple[List, List]:
|
||
|
data = torch.rand(1, 3, 384, 384)
|
||
|
meta_args = {'x': data}
|
||
|
return data, meta_args
|
||
|
|
||
|
|
||
|
@pytest.mark.skipif(
|
||
|
not (AUTOCHUNK_AVAILABLE and HAS_REPO),
|
||
|
reason="torch version is lower than 1.12.0",
|
||
|
)
|
||
|
@pytest.mark.parametrize("model", MODELS)
|
||
|
@pytest.mark.parametrize("max_memory", [None, 32, 40])
|
||
|
def test_evoformer_block(model, max_memory):
|
||
|
run_func = partial(
|
||
|
run_test,
|
||
|
max_memory=max_memory,
|
||
|
model=model,
|
||
|
data=get_data(),
|
||
|
)
|
||
|
mp.spawn(run_func, nprocs=1)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
run_test(
|
||
|
rank=0,
|
||
|
data=get_data(),
|
||
|
max_memory=None,
|
||
|
model=vit,
|
||
|
print_code=False,
|
||
|
print_mem=False,
|
||
|
print_est_mem=False,
|
||
|
print_progress=False,
|
||
|
)
|