ColossalAI/tests/test_infer/test_inference_engine.py

85 lines
2.6 KiB
Python
Raw Normal View History

2024-01-03 10:50:26 +00:00
import random
import numpy as np
import pytest
2024-01-03 10:50:26 +00:00
import torch
import transformers
2023-12-26 13:34:27 +00:00
from transformers import AutoTokenizer, GenerationConfig
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import rerun_if_address_is_in_use, spawn
2024-01-03 10:50:26 +00:00
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
2024-01-02 10:30:11 +00:00
def check_inference_engine(test_cai=False):
2024-01-03 10:50:26 +00:00
setup_seed(20)
2024-01-02 10:30:11 +00:00
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=16
)
2024-01-04 07:03:18 +00:00
).cuda()
2024-01-09 05:52:53 +00:00
model = model.eval()
inputs = [
2024-01-09 05:52:53 +00:00
"介绍一下今天的北京,比如故宫,天安门,长城或者其他的一些景点,",
2024-01-03 10:50:26 +00:00
"介绍一下武汉,",
]
2024-01-09 05:52:53 +00:00
output_len = 128
do_sample = True
2024-01-09 05:52:53 +00:00
top_p = 0.5
top_k = 50
2024-01-02 10:30:11 +00:00
if test_cai:
inference_config = InferenceConfig(max_output_len=output_len)
2024-01-02 10:30:11 +00:00
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
2024-01-09 05:52:53 +00:00
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k)
2024-01-02 10:30:11 +00:00
outputs = inference_engine.generate(generation_config)
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
2024-01-04 07:03:18 +00:00
inputs = inputs.cuda()
generation_config = GenerationConfig(
2024-01-09 05:52:53 +00:00
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=output_len,
2024-01-04 07:03:18 +00:00
)
2024-01-02 10:30:11 +00:00
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
2024-01-03 10:50:26 +00:00
2024-01-02 10:30:11 +00:00
return outputs
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
2024-01-03 10:50:26 +00:00
cai_outputs = check_inference_engine(True)
transformer_outputs = check_inference_engine(False)
2024-01-02 10:30:11 +00:00
2024-01-03 10:50:26 +00:00
for s1, s2 in zip(cai_outputs, transformer_outputs):
assert s1 == s2
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_inference_engine():
spawn(run_dist, 1)
if __name__ == "__main__":
test_inference_engine()