Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

137 lines
5.1 KiB

import pytest
import torch
from packaging import version
try:
from colossalai.kernel.triton import int8_rotary_embedding_fwd
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
try:
from colossalai.inference.quant.smoothquant.models import LLamaSmoothquantAttention
HAS_TORCH_INT = True
except ImportError:
HAS_TORCH_INT = False
print("Please install torch_int from https://github.com/Guangxuan-Xiao/torch-int")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
import math
import torch
from torch.nn import functional as F
def torch_context_attention(xq, xk, xv, bs, seqlen, num_head, head_dim):
"""
adapted from https://github.com/ModelTC/lightllm/blob/main/lightllm/models/bloom/triton_kernel/context_flashattention_nopad.py#L253
"""
xq = xq.view(bs, seqlen, num_head, head_dim)
xk = xk.view(bs, seqlen, num_head, head_dim)
xv = xv.view(bs, seqlen, num_head, head_dim)
mask = torch.tril(torch.ones(seqlen, seqlen), diagonal=0).unsqueeze(0).unsqueeze(0).cuda()
mask[mask == 0.0] = -100000000.0
mask = mask.repeat(bs, num_head, 1, 1)
keys = xk
values = xv
xq = xq.transpose(1, 2)
keys = keys.transpose(1, 2)
values = values.transpose(1, 2)
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(head_dim)
scores = F.softmax(scores.float() + mask, dim=-1).type_as(xq)
output = torch.matmul(scores, values).transpose(1, 2).contiguous().reshape(-1, num_head, head_dim)
return output
@pytest.mark.skipif(
not TRITON_CUDA_SUPPORT or not HAS_TRITON or not HAS_TORCH_INT,
reason="triton requires cuda version to be higher than 11.4 or not install torch_int",
)
def test_llama_context_attention():
head_num = 2
seq_len = 32
head_dim = 64
dtype = torch.float
hidden_size = head_num * head_dim
smooth_attn = LLamaSmoothquantAttention(head_num * head_dim, head_num)
smooth_attn.q_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8)
smooth_attn.k_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8)
smooth_attn.v_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8)
smooth_attn.out_proj.weight = torch.ones(hidden_size, hidden_size, device="cuda").to(torch.int8)
smooth_attn.out_proj.weight[:, 1:hidden_size] = torch.zeros(hidden_size - 1, device="cuda").to(torch.int8)
qkv_weight_scale = 1.0
ones = torch.ones(hidden_size, hidden_size, dtype=torch.float, device="cuda")
smooth_attn = smooth_attn.to("cuda")
input = torch.randint(-20, 20, (1, seq_len, head_num * head_dim), dtype=torch.int8, device="cuda")
input_scale = 1 / 20.0
output = torch.matmul(input.to(torch.float) * input_scale, ones)
qkv_max_out = torch.max(torch.abs(output)) / 127
smooth_attn.q_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out)
smooth_attn.k_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out)
smooth_attn.v_proj.a = torch.tensor(input_scale * qkv_weight_scale / qkv_max_out)
q = smooth_attn.q_proj(input)
k = smooth_attn.k_proj(input)
v = smooth_attn.v_proj(input)
cos_shape = (seq_len, head_dim // 2)
cos = torch.ones(cos_shape, dtype=dtype, device="cuda")
sin = torch.zeros(cos_shape, dtype=dtype, device="cuda")
in_scale = torch.tensor([qkv_max_out], device="cuda")
out_scale = torch.tensor([qkv_max_out], device="cuda")
int8_rotary_embedding_fwd(q.view(-1, head_num, head_dim), cos, sin, in_scale.item(), out_scale.item())
int8_rotary_embedding_fwd(k.view(-1, head_num, head_dim), cos, sin, in_scale.item(), out_scale.item())
q = q.to(torch.float) * out_scale
k = k.to(torch.float) * out_scale
v = v.to(torch.float) * out_scale
torch_out = torch_context_attention(q.clone(), k.clone(), v.clone(), 1, seq_len, head_num, head_dim)
attn_out_max = torch.max(torch.abs(torch_out)) / 127
output = torch.matmul(torch_out.view(-1, seq_len, head_num * head_dim), ones)
smooth_attn.q_output_scale = torch.tensor(qkv_max_out)
smooth_attn.k_output_scale = torch.tensor(qkv_max_out)
smooth_attn.v_output_scale = torch.tensor(qkv_max_out)
smooth_attn.q_rotary_output_scale = torch.tensor(qkv_max_out)
smooth_attn.k_rotary_output_scale = torch.tensor(qkv_max_out)
smooth_attn.attn_output_scale = torch.tensor(attn_out_max)
smooth_attn.out_proj.a = torch.tensor([attn_out_max])
torch_out = (
(torch_out / smooth_attn.attn_output_scale)
.round()
.clamp(-128, 127)
.to(torch.int8)
.view(-1, seq_len, head_num * head_dim)
)
torch_out = smooth_attn.out_proj(torch_out)
torch_out = torch_out.to(torch.float)
smooth_attn = smooth_attn.to("cuda")
smooth_out, _, _ = smooth_attn(input, (cos, sin))
smooth_out = smooth_out.to(torch.float)
assert torch.allclose(
torch_out.cpu(), smooth_out.cpu(), rtol=1e-1, atol=1e-1
), "outputs from triton and torch are not matched"
if __name__ == "__main__":
test_llama_context_attention()