mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
6.9 KiB
172 lines
6.9 KiB
1 year ago
|
import argparse
|
||
|
import copy
|
||
|
import os
|
||
|
from typing import Dict, List
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
from colossal_eval import dataset, models, utils
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.logging import get_dist_logger
|
||
|
|
||
|
logger = get_dist_logger()
|
||
|
|
||
|
|
||
|
def rm_and_merge(world_size: int, save_path: str, model_names: List[str], dataset_names: Dict[str, List]) -> None:
|
||
|
"""
|
||
|
Remove inference result per rank and merge them into one file.
|
||
|
|
||
|
Args:
|
||
|
world_size: Number of processes for inference.
|
||
|
save_path: The folder for storing inference results.
|
||
|
model_names: Names of models for inference.
|
||
|
dataset_names: Names of dataset for inference.
|
||
|
|
||
|
"""
|
||
|
|
||
|
for model_name in model_names:
|
||
|
for dataset_name, categories in dataset_names.items():
|
||
|
all_answers = {}
|
||
|
for category in categories:
|
||
|
all_answers[category] = {"data": []}
|
||
|
answers = {"data": []}
|
||
|
|
||
|
for r in range(world_size):
|
||
|
directory = os.path.join(
|
||
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_rank{r}.json"
|
||
|
)
|
||
|
if not os.path.exists(directory):
|
||
|
raise Exception(
|
||
|
f"Directory {directory} not found. There may be an error during inference time."
|
||
|
)
|
||
|
else:
|
||
|
rank_answers = utils.jload(directory)
|
||
|
answers["data"].extend(rank_answers["data"])
|
||
|
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
|
||
|
|
||
|
for r in range(world_size):
|
||
|
try:
|
||
|
directory = os.path.join(
|
||
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_rank{r}.json"
|
||
|
)
|
||
|
os.remove(directory)
|
||
|
except Exception as e:
|
||
|
print(e)
|
||
|
|
||
|
all_answers[category] = answers
|
||
|
|
||
|
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
|
||
|
utils.jdump(all_answers, os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"))
|
||
|
|
||
|
logger.info(f"Save inference results of model {model_name} for all dataset.")
|
||
|
logger.info(f"Save inference results of all models for all dataset.")
|
||
|
|
||
|
|
||
|
def main(args):
|
||
|
colossalai.launch_from_torch(config={}, seed=42)
|
||
|
world_size = dist.get_world_size()
|
||
|
rank = dist.get_rank()
|
||
|
|
||
|
inference_data = {}
|
||
|
debug_args = {}
|
||
|
few_shot_args = {}
|
||
|
|
||
|
config = utils.jload(args.config)
|
||
|
|
||
|
model_parameters = config["model"]
|
||
|
dataset_parameters = config["dataset"]
|
||
|
|
||
|
for dataset_parameter in dataset_parameters:
|
||
|
path = dataset_parameter["path"]
|
||
|
save_path = dataset_parameter["save_path"]
|
||
|
dataset_name = dataset_parameter["name"]
|
||
|
debug_args[dataset_name] = dataset_parameter["debug"]
|
||
|
few_shot_args[dataset_name] = dataset_parameter["few_shot"]
|
||
|
|
||
|
if not args.load_dataset:
|
||
|
if os.path.exists(save_path):
|
||
|
dataset_ = utils.jload(save_path)
|
||
|
inference_data[dataset_name] = dataset_["test"]
|
||
|
else:
|
||
|
raise Exception(
|
||
|
"Can't find the converted dataset. You may set load_dataset True to store the dataset first."
|
||
|
)
|
||
|
|
||
|
continue
|
||
|
|
||
|
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
|
||
|
if not issubclass(dataset_class, dataset.BaseDataset):
|
||
|
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
|
||
|
|
||
|
dataset_ = dataset_class(path, logger, dataset_parameter["few_shot"])
|
||
|
|
||
|
dataset_.save(save_path)
|
||
|
inference_data[dataset_name] = dataset_.dataset["test"]
|
||
|
|
||
|
for model_parameter in model_parameters:
|
||
|
model_name = model_parameter["name"]
|
||
|
model_class = eval(f"models.{model_parameter['model_class']}")
|
||
|
paramerters = model_parameter["parameters"]
|
||
|
paramerters.update({"logger": logger})
|
||
|
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
|
||
|
|
||
|
model_ = model_class(**paramerters)
|
||
|
if not issubclass(model_class, models.BaseModel):
|
||
|
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
|
||
|
|
||
|
for dataset_name, split_data in inference_data.items():
|
||
|
start = 0
|
||
|
for category, category_data in split_data.items():
|
||
|
if few_shot_args[dataset_name] and category_data["inference_kwargs"].get("few_shot_data", None) is None:
|
||
|
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
|
||
|
|
||
|
answers_to_dump = copy.deepcopy(category_data)
|
||
|
partition_size = len(category_data["data"]) // world_size
|
||
|
redundant = len(category_data["data"]) % world_size
|
||
|
|
||
|
# Ensure that the amount of data for inference is as consistent as possible across different processes.
|
||
|
lengths = [partition_size for _ in range(world_size)]
|
||
|
for j in range(redundant):
|
||
|
lengths[(j + start) % world_size] += 1
|
||
|
|
||
|
start = (start + redundant) % world_size
|
||
|
|
||
|
questions = category_data["data"][sum(lengths[0:rank]) : sum(lengths[0:rank]) + lengths[rank]]
|
||
|
|
||
|
answers_per_rank = model_.inference(
|
||
|
questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name]
|
||
|
)
|
||
|
|
||
|
answers_to_dump["data"] = answers_per_rank
|
||
|
|
||
|
utils.jdump(
|
||
|
answers_to_dump,
|
||
|
os.path.join(
|
||
|
args.inference_save_path,
|
||
|
model_name,
|
||
|
f"{dataset_name}_{category}_inference_results_rank{rank}.json",
|
||
|
),
|
||
|
)
|
||
|
|
||
|
logger.info(f"Rank {rank} peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB")
|
||
|
|
||
|
del model_
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
dist.barrier()
|
||
|
if rank == 0:
|
||
|
model_names = [model_parameter["name"] for model_parameter in model_parameters]
|
||
|
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
|
||
|
rm_and_merge(world_size, args.inference_save_path, model_names, dataset_names)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser(description="ColossalEval inference process.")
|
||
|
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
|
||
|
parser.add_argument("--load_dataset", default=False, action="store_true")
|
||
|
parser.add_argument("--inference_save_path", type=str, default=None, help="path to save inference results")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
main(args)
|