ColossalAI/examples/tutorial/new_api/cifar_resnet/train.py

205 lines
8.1 KiB
Python
Raw Normal View History

import argparse
import os
from pathlib import Path
import torch
import torch.distributed as dist
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from torch.optim import Optimizer
from torch.optim.lr_scheduler import MultiStepLR
from torch.utils.data import DataLoader
from tqdm import tqdm
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.booster.plugin.dp_plugin_base import DPPluginBase
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
# ==============================
# Prepare Hyperparameters
# ==============================
NUM_EPOCHS = 80
LEARNING_RATE = 1e-3
def build_dataloader(batch_size: int, coordinator: DistCoordinator, plugin: DPPluginBase):
# transform
transform_train = transforms.Compose(
[transforms.Pad(4),
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32),
transforms.ToTensor()])
transform_test = transforms.ToTensor()
# CIFAR-10 dataset
data_path = os.environ.get('DATA', './data')
with coordinator.priority_execution():
train_dataset = torchvision.datasets.CIFAR10(root=data_path,
train=True,
transform=transform_train,
download=True)
test_dataset = torchvision.datasets.CIFAR10(root=data_path,
train=False,
transform=transform_test,
download=True)
# Data loader
train_dataloader = plugin.prepare_dataloader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True)
test_dataloader = plugin.prepare_dataloader(test_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
return train_dataloader, test_dataloader
@torch.no_grad()
def evaluate(model: nn.Module, test_dataloader: DataLoader, coordinator: DistCoordinator) -> float:
model.eval()
correct = torch.zeros(1, dtype=torch.int64, device=get_current_device())
total = torch.zeros(1, dtype=torch.int64, device=get_current_device())
for images, labels in test_dataloader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
dist.all_reduce(correct)
dist.all_reduce(total)
accuracy = correct.item() / total.item()
if coordinator.is_master():
print(f'Accuracy of the model on the test images: {accuracy * 100:.2f} %')
return accuracy
def train_epoch(epoch: int, model: nn.Module, optimizer: Optimizer, criterion: nn.Module, train_dataloader: DataLoader,
booster: Booster, coordinator: DistCoordinator):
model.train()
with tqdm(train_dataloader, desc=f'Epoch [{epoch + 1}/{NUM_EPOCHS}]', disable=not coordinator.is_master()) as pbar:
for images, labels in pbar:
images = images.cuda()
labels = labels.cuda()
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
booster.backward(loss, optimizer)
optimizer.step()
optimizer.zero_grad()
# Print log info
pbar.set_postfix({'loss': loss.item()})
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
# FIXME(ver217): gemini is not supported resnet now
parser.add_argument('-p',
'--plugin',
type=str,
default='torch_ddp',
choices=['torch_ddp', 'torch_ddp_fp16', 'low_level_zero'],
help="plugin to use")
parser.add_argument('-r', '--resume', type=int, default=-1, help="resume from the epoch's checkpoint")
parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory")
parser.add_argument('-i', '--interval', type=int, default=5, help="interval of saving checkpoint")
parser.add_argument('--target_acc',
type=float,
default=None,
help="target accuracy. Raise exception if not reached")
args = parser.parse_args()
# ==============================
# Prepare Checkpoint Directory
# ==============================
if args.interval > 0:
Path(args.checkpoint).mkdir(parents=True, exist_ok=True)
# ==============================
# Launch Distributed Environment
# ==============================
colossalai.launch_from_torch(config={})
coordinator = DistCoordinator()
# update the learning rate with linear scaling
# old_gpu_num / old_lr = new_gpu_num / new_lr
global LEARNING_RATE
LEARNING_RATE *= coordinator.world_size
# ==============================
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == 'torch_ddp_fp16':
booster_kwargs['mixed_precision'] = 'fp16'
if args.plugin.startswith('torch_ddp'):
plugin = TorchDDPPlugin()
elif args.plugin == 'gemini':
plugin = GeminiPlugin(placement_policy='cuda', strict_ddp_mode=True, initial_scale=2**5)
elif args.plugin == 'low_level_zero':
plugin = LowLevelZeroPlugin(initial_scale=2**5)
booster = Booster(plugin=plugin, **booster_kwargs)
# ==============================
# Prepare Dataloader
# ==============================
train_dataloader, test_dataloader = build_dataloader(100, coordinator, plugin)
# ====================================
# Prepare model, optimizer, criterion
# ====================================
# resent50
model = torchvision.models.resnet18(num_classes=10)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = HybridAdam(model.parameters(), lr=LEARNING_RATE)
# lr scheduler
lr_scheduler = MultiStepLR(optimizer, milestones=[20, 40, 60, 80], gamma=1 / 3)
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, criterion, _, lr_scheduler = booster.boost(model,
optimizer,
criterion=criterion,
lr_scheduler=lr_scheduler)
# ==============================
# Resume from checkpoint
# ==============================
if args.resume >= 0:
booster.load_model(model, f'{args.checkpoint}/model_{args.resume}.pth')
booster.load_optimizer(optimizer, f'{args.checkpoint}/optimizer_{args.resume}.pth')
booster.load_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{args.resume}.pth')
# ==============================
# Train model
# ==============================
start_epoch = args.resume if args.resume >= 0 else 0
for epoch in range(start_epoch, NUM_EPOCHS):
train_epoch(epoch, model, optimizer, criterion, train_dataloader, booster, coordinator)
lr_scheduler.step()
# save checkpoint
if args.interval > 0 and (epoch + 1) % args.interval == 0:
booster.save_model(model, f'{args.checkpoint}/model_{epoch + 1}.pth')
booster.save_optimizer(optimizer, f'{args.checkpoint}/optimizer_{epoch + 1}.pth')
booster.save_lr_scheduler(lr_scheduler, f'{args.checkpoint}/lr_scheduler_{epoch + 1}.pth')
accuracy = evaluate(model, test_dataloader, coordinator)
if args.target_acc is not None:
assert accuracy >= args.target_acc, f'Accuracy {accuracy} is lower than target accuracy {args.target_acc}'
if __name__ == '__main__':
main()