mirror of https://github.com/hpcaitech/ColossalAI
74 lines
3.0 KiB
Python
74 lines
3.0 KiB
Python
![]() |
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.distributed as dist
|
||
|
import collections
|
||
|
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
|
||
|
from colossalai.utils.model.colo_init_context import colo_state_dict
|
||
|
|
||
|
def save_checkpoint(dire,
|
||
|
epoch: int,
|
||
|
model: torch.nn.Module,
|
||
|
optimizer: torch.optim.Optimizer = None,
|
||
|
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
|
||
|
*args,
|
||
|
**kwargs):
|
||
|
"""save_checkpoint
|
||
|
save a model, whose parameters are `ColoTensor`s.
|
||
|
Args:
|
||
|
dire (_type_): _description_
|
||
|
epoch (int): _description_
|
||
|
model (torch.nn.Module): _description_
|
||
|
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
|
||
|
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
|
||
|
"""
|
||
|
model_state = {
|
||
|
'epoch': epoch,
|
||
|
'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)
|
||
|
}
|
||
|
if dist.get_rank() == 0:
|
||
|
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
|
||
|
lr_scheduler_dict = lr_scheduler.state_dict()
|
||
|
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
|
||
|
optim_state = {
|
||
|
'epoch': epoch,
|
||
|
'optimizer': optimizer.state_dict(),
|
||
|
'lr_scheduler': lr_scheduler_dict
|
||
|
}
|
||
|
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def load_checkpoint(dire,
|
||
|
epoch: int,
|
||
|
rank: int,
|
||
|
model: torch.nn.Module,
|
||
|
optimizer: torch.optim.Optimizer = None,
|
||
|
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
|
||
|
*args,
|
||
|
**kwargs):
|
||
|
"""load_checkpoint
|
||
|
load a model, whose parameters are `ColoTensor`s.
|
||
|
Args:
|
||
|
dire (_type_): _description_
|
||
|
epoch (int): _description_
|
||
|
rank (int): _description_
|
||
|
model (torch.nn.Module): _description_
|
||
|
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
|
||
|
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
|
||
|
"""
|
||
|
model_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch))
|
||
|
model_state['model'] = collections.OrderedDict([(k.split('.', 1)[1], v) for k, v in model_state['model'].items()])
|
||
|
model.load_state_dict(model_state['model'])
|
||
|
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
|
||
|
optimizer.load_state_dict(optim_state['optimizer'])
|
||
|
lr_scheduler_dict = optim_state['lr_scheduler']
|
||
|
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
|
||
|
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(
|
||
|
optimizer,
|
||
|
after_scheduler_dict['T_max'],
|
||
|
after_scheduler_dict['eta_min'],
|
||
|
after_scheduler_dict['last_epoch']
|
||
|
)
|
||
|
lr_scheduler.load_state_dict(lr_scheduler_dict)
|