ColossalAI/colossalai/utils/checkpoint/module_checkpoint.py

74 lines
3.0 KiB
Python
Raw Normal View History

import torch
import torch.nn as nn
import torch.distributed as dist
import collections
from torch.optim.lr_scheduler import CosineAnnealingLR as _CosineAnnealingLR
from colossalai.utils.model.colo_init_context import colo_state_dict
def save_checkpoint(dire,
epoch: int,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args,
**kwargs):
"""save_checkpoint
save a model, whose parameters are `ColoTensor`s.
Args:
dire (_type_): _description_
epoch (int): _description_
model (torch.nn.Module): _description_
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
"""
model_state = {
'epoch': epoch,
'model': colo_state_dict(model, state_dict_func=nn.Module.state_dict)
}
if dist.get_rank() == 0:
torch.save(model_state, dire + '/epoch_{}_model.pth'.format(epoch))
lr_scheduler_dict = lr_scheduler.state_dict()
lr_scheduler_dict['after_scheduler'] = lr_scheduler_dict['after_scheduler'].state_dict()
optim_state = {
'epoch': epoch,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler_dict
}
torch.save(optim_state, dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, dist.get_rank()))
def load_checkpoint(dire,
epoch: int,
rank: int,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer = None,
lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
*args,
**kwargs):
"""load_checkpoint
load a model, whose parameters are `ColoTensor`s.
Args:
dire (_type_): _description_
epoch (int): _description_
rank (int): _description_
model (torch.nn.Module): _description_
optimizer (torch.optim.Optimizer, optional): _description_. Defaults to None.
lr_scheduler (torch.optim.lr_scheduler._LRScheduler, optional): _description_. Defaults to None.
"""
model_state = torch.load(dire + '/epoch_{}_model.pth'.format(epoch))
model_state['model'] = collections.OrderedDict([(k.split('.', 1)[1], v) for k, v in model_state['model'].items()])
model.load_state_dict(model_state['model'])
optim_state = torch.load(dire + '/epoch_{}_optim_rank_{}.pth'.format(epoch, rank))
optimizer.load_state_dict(optim_state['optimizer'])
lr_scheduler_dict = optim_state['lr_scheduler']
after_scheduler_dict = lr_scheduler_dict['after_scheduler']
lr_scheduler_dict['after_scheduler'] = _CosineAnnealingLR(
optimizer,
after_scheduler_dict['T_max'],
after_scheduler_dict['eta_min'],
after_scheduler_dict['last_epoch']
)
lr_scheduler.load_state_dict(lr_scheduler_dict)