ColossalAI/tests/test_zero/test_low_level/test_zero1_2.py

195 lines
6.1 KiB
Python
Raw Normal View History

import copy
import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.random import seed_all
from colossalai.zero import LowLevelZeroOptimizer
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(123, 253)
self.linear_drop = nn.Linear(253, 253)
self.linear2 = nn.Linear(253, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def loose_close(a, b, dtype: torch.dtype = torch.float32):
rtol = None
atol = None
if dtype is torch.float16:
rtol = 5e-2
atol = 5e-4
elif dtype is torch.bfloat16:
rtol = 4e-3
atol = 4e-3
a = a.detach().to(dtype)
b = b.detach().to(dtype)
assert_close(a, b, rtol=rtol, atol=atol)
def split_ddp_grad(grad, world_size):
with torch.no_grad():
grad = grad.clone().detach().flatten()
padding_size = (world_size - grad.numel() % world_size) % world_size
if padding_size > 0:
grad = torch.nn.functional.pad(grad, [0, padding_size])
splited_grad = grad.split(grad.numel() // world_size)
return splited_grad
def exam_zero_1_2():
"""
In this test, we want to test whether zero stage 1 and 2
deliver the same numerical results despite different communication
pattern
we use these prefixes to differentiate the zero stage
oss: partition optimizer states
pg: partition gradients and optimizer states
"""
local_rank = torch.distributed.get_rank()
seed_all(2001)
# create model
zero1_model = MlpModel().cuda()
zero2_model = copy.deepcopy(zero1_model)
# create optimizer
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
overlap_communication=True,
initial_scale=128,
verbose=True)
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=128)
# create data
seed_all(2001 + local_rank)
input_data = torch.randn(32, 123).cuda()
zero1_output = zero1_model(input_data)
zero2_output = zero2_model(input_data)
assert torch.equal(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.mean().float())
zero2_optimizer.backward(zero2_output.mean().float())
# check grad
z1g_list = zero1_optimizer._grad_store.get_working_grads_by_group_id(0)
z2g_list = zero2_optimizer._grad_store.get_working_grads_by_group_id(0)
for z1g, z2g in zip(z1g_list, z2g_list):
assert torch.equal(z1g, z2g)
# step
zero1_optimizer.step()
zero2_optimizer.step()
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
@parameterize('dtype', [torch.float16, torch.bfloat16])
def exam_zero_1_torch_ddp(world_size, dtype: torch.dtype):
"""
In this test, two pairs of model and optimizers are created.
1. zero: use sharded optimizer and fp16 parameters
2. torch: use torch DDP and fp32 parameters
We feed these two sets of models with the same input and check if the
differences in model output and updated parameters are within tolerance.
"""
local_rank = torch.distributed.get_rank()
seed_all(1453)
# create models
torch_model = MlpModel().cuda()
zero_model = copy.deepcopy(torch_model).to(dtype)
torch_model = DDP(torch_model.cuda(), static_graph=True).cuda()
# create optimizer
zero_optimizer = torch.optim.SGD(zero_model.parameters(), lr=1)
# we only test stage 1 here
# in `check_sharded_param_consistency.py`, we will test whether
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=True,
initial_scale=1,
reduce_bucket_size=1024 * 1024)
torch_optimizer = torch.optim.SGD(torch_model.parameters(), lr=1)
seed_all(1453 + local_rank)
# create
input_data = torch.rand(32, 123).cuda()
# zero-dp forward
zero_output = zero_model(input_data.to(dtype))
# torch-ddp forward
torch_output = torch_model(input_data)
loose_close(zero_output, torch_output, dtype=dtype)
# zero-dp backward
zero_optimizer.backward(zero_output.mean().float())
# torch-ddp backward
torch_output.mean().backward()
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
if p.grad is not None:
zero_grad_list = zero_optimizer._grad_store.get_partitioned_gradients_by_param_id(0, id(z1p))
torch_grad_list = split_ddp_grad(p.grad, world_size)
for zero_grad, torch_grad in zip(zero_grad_list, torch_grad_list):
loose_close(zero_grad, torch_grad, dtype=dtype)
# zero-dp step
zero_optimizer.step()
# torch ddp step
torch_optimizer.step()
# check updated param
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
loose_close(p.data, z1p.data, dtype=dtype)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_1_torch_ddp(world_size=world_size)
exam_zero_1_2()
@pytest.mark.dist
@rerun_if_address_is_in_use()
def test_zero_1_2():
spawn(run_dist, 2)
if __name__ == '__main__':
test_zero_1_2()