ColossalAI/tests/test_pipeline/test_cuda_rpc_pipeline.py

103 lines
3.3 KiB
Python
Raw Normal View History

import os
import argparse
import torch
from torch import nn
import torch.multiprocessing as mp
import torch.distributed.rpc as rpc
from colossalai.pipeline.rpc.PipelineBase import FillDrainPipelineEngine, OneFOneBPipelineEngine
class TestModel(nn.Module):
def __init__(self, rank, world_size, feat_num, h) -> None:
super().__init__()
self.rank = rank
self.is_last_rank = rank == world_size - 1
self.linear_name = f'linear_{rank}'
if rank == 0:
setattr(self, self.linear_name, nn.Linear(feat_num, h))
elif rank == world_size - 1:
setattr(self, self.linear_name, nn.Linear(h, 1))
else:
setattr(self, self.linear_name, nn.Linear(h, h))
def forward(self, x) -> torch.Tensor:
linear: nn.Module = getattr(self, self.linear_name)
out: torch.Tensor = linear(x)
if self.is_last_rank:
out = out.sum()
return out
def run_main(args):
torch.manual_seed(100)
sample_num = 128
feat_num = 10000
h = 10000
device = args.device
world_size = args.world_size
batch_size = 128
assert sample_num % batch_size == 0
batch_num = sample_num // batch_size
num_microbatches = world_size
input_sample = torch.randn((sample_num, feat_num), device=device)
module_partitions = [TestModel(rank, world_size, feat_num, h) for rank in range(world_size)]
engine = OneFOneBPipelineEngine(module_partitions=module_partitions,
chunk=1,
world_size=world_size,
num_microbatches=num_microbatches,
device=args.device,
max_outstanding=world_size,
use_interleave=False,
checkpoint=False)
for i in range(batch_num):
batch = input_sample[i * batch_size:(i + 1) * batch_size]
engine.forward_backward(batch)
def run_worker(rank, args):
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
# config rpc
# if cuda is used, set_device_map is a must is configured
# for cuda is not supported in torch rpc by default
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=args.num_worker_threads)
world_size = args.world_size
for rank_idx in range(world_size):
options.set_device_map(f'work{rank_idx}', {rank: rank_idx})
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
# in rpc mode, only rank 0 is needed to be coded
if rank == 0:
run_main(args)
# barrier here
rpc.shutdown()
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--world_size', type=int, default=2)
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--master_addr', type=str, default='localhost')
parser.add_argument('--master_port', type=str, default='29020')
parser.add_argument('--num_worker_threads', type=str, default=128)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
world_size = args.world_size
assert args.device in ['cpu', 'cuda'], "device must be cpu or cuda!"
mp.spawn(run_worker, args=(args,), nprocs=world_size)