mirror of https://github.com/hpcaitech/ColossalAI
23 lines
1011 B
Python
23 lines
1011 B
Python
|
from typing import Tuple
|
||
|
import torch
|
||
|
from ..registry import meta_profiler_module
|
||
|
|
||
|
|
||
|
@meta_profiler_module.register(torch.nn.AvgPool1d)
|
||
|
@meta_profiler_module.register(torch.nn.AvgPool2d)
|
||
|
@meta_profiler_module.register(torch.nn.AvgPool3d)
|
||
|
@meta_profiler_module.register(torch.nn.MaxPool1d)
|
||
|
@meta_profiler_module.register(torch.nn.MaxPool2d)
|
||
|
@meta_profiler_module.register(torch.nn.MaxPool3d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveAvgPool1d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveMaxPool1d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveAvgPool2d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveMaxPool2d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveAvgPool3d)
|
||
|
@meta_profiler_module.register(torch.nn.AdaptiveMaxPool3d)
|
||
|
def torch_nn_pooling(self: torch.nn.Module, input: torch.Tensor) -> Tuple[int, int]:
|
||
|
# all pooling could be considered as going over each input element only once (https://stackoverflow.com/a/67301217)
|
||
|
flops = input.numel()
|
||
|
macs = 0
|
||
|
return flops, macs
|