|
|
|
import contextlib
|
|
|
|
import os
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
|
|
from colossalai.tensor.moe_tensor.api import get_dp_group, get_dp_group_ranks, get_ep_size, is_moe_tensor
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
|
|
|
|
|
|
class ForceFP32Parameter(torch.nn.Parameter):
|
|
|
|
|
|
|
|
def half(self, memory_format=None):
|
|
|
|
return self.data.clone()
|
|
|
|
|
|
|
|
|
|
|
|
class NormalNoiseGenerator:
|
|
|
|
"""Generates a random noisy mask for logits tensor.
|
|
|
|
|
|
|
|
All noise is generated from a normal distribution :math:`(0, 1 / E^2)`, where
|
|
|
|
`E = the number of experts`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
num_experts (int): The number of experts.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, num_experts: int):
|
|
|
|
self.normal = torch.distributions.normal.Normal(
|
|
|
|
loc=torch.tensor(0.0, device=get_current_device()),
|
|
|
|
scale=torch.tensor(1.0 / num_experts**2, device=get_current_device()),
|
|
|
|
).rsample
|
|
|
|
|
|
|
|
def __call__(self, inputs: torch.Tensor):
|
|
|
|
noisy = self.normal(inputs.shape)
|
|
|
|
return inputs + noisy
|
|
|
|
|
|
|
|
|
|
|
|
class UniformNoiseGenerator:
|
|
|
|
"""Generates a random noisy mask for logits tensor.
|
|
|
|
copied from mesh tensorflow:
|
|
|
|
Multiply values by a random number between :math:`1-epsilon` and :math:`1+epsilon`.
|
|
|
|
Makes models more resilient to rounding errors introduced by bfloat16.
|
|
|
|
This seems particularly important for logits.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
eps (float, optional): Epsilon in generator, defaults 1e-2.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, eps: float = 1e-2):
|
|
|
|
self.uniform = torch.distributions.uniform.Uniform(
|
|
|
|
low=torch.tensor(1.0 - eps, device=get_current_device()),
|
|
|
|
high=torch.tensor(1.0 + eps, device=get_current_device()),
|
|
|
|
).rsample
|
|
|
|
|
|
|
|
def __call__(self, inputs: torch.Tensor):
|
|
|
|
noisy = self.uniform(inputs.shape)
|
|
|
|
return inputs * noisy
|
|
|
|
|
|
|
|
|
|
|
|
def autocast_softmax(logit: torch.Tensor, dim: int):
|
|
|
|
return F.softmax(logit, dim=dim, detype=torch.float32)
|
|
|
|
|
|
|
|
|
|
|
|
def get_noise_generator(noise_type: str, num_experts: int) -> Callable:
|
|
|
|
if noise_type is None:
|
|
|
|
return None
|
|
|
|
elif noise_type == "Jitter":
|
|
|
|
noisy_func = UniformNoiseGenerator()
|
|
|
|
elif noise_type == "Gaussian":
|
|
|
|
noisy_func = NormalNoiseGenerator(num_experts)
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("Unsupported input noisy policy")
|
|
|
|
return noisy_func
|
|
|
|
|
|
|
|
|
|
|
|
def get_activation(act: str) -> Callable:
|
|
|
|
if act is None or act == "relu":
|
|
|
|
return torch.nn.ReLU()
|
|
|
|
elif act == "gelu":
|
|
|
|
return torch.nn.GELU()
|
|
|
|
elif act == "swiglu":
|
|
|
|
return SwiGLU
|
|
|
|
else:
|
|
|
|
raise NotImplementedError("Unsupported activation function")
|
|
|
|
|
|
|
|
|
|
|
|
def SwiGLU(x):
|
|
|
|
"""Gated linear unit activation function.
|
|
|
|
Args:
|
|
|
|
x : input array
|
|
|
|
axis: the axis along which the split should be computed (default: -1)
|
|
|
|
"""
|
|
|
|
size = x.shape[-1]
|
|
|
|
assert size % 2 == 0, "axis size must be divisible by 2"
|
|
|
|
x1, x2 = torch.split(x, size // 2, -1)
|
|
|
|
return x1 * (x2 * torch.sigmoid(x2))
|
|
|
|
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def skip_init():
|
|
|
|
"""
|
|
|
|
skip param random init
|
|
|
|
"""
|
|
|
|
|
|
|
|
def _skip_init(*args, **kwargs):
|
|
|
|
pass
|
|
|
|
|
|
|
|
init_func = {
|
|
|
|
"constant_": torch.nn.init.constant_,
|
|
|
|
"uniform_": torch.nn.init.uniform_,
|
|
|
|
"normal_": torch.nn.init.normal_,
|
|
|
|
"kaiming_uniform_": torch.nn.init.kaiming_uniform_,
|
|
|
|
"kaiming_normal_": torch.nn.init.kaiming_normal_,
|
|
|
|
"xavier_normal_": torch.nn.init.xavier_normal_,
|
|
|
|
"xavier_uniform_": torch.nn.init.xavier_uniform_,
|
|
|
|
"trunc_normal_": torch.nn.init.trunc_normal_,
|
|
|
|
}
|
|
|
|
|
|
|
|
for method_name, original_init in init_func.items():
|
|
|
|
setattr(torch.nn.init, method_name, _skip_init)
|
|
|
|
|
|
|
|
yield
|
|
|
|
|
|
|
|
for method_name, original_init in init_func.items():
|
|
|
|
setattr(torch.nn.init, method_name, original_init)
|
|
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
|
|
def get_moe_epsize_param_dict(model: nn.Module) -> Dict[int, List[nn.Parameter]]:
|
|
|
|
"""Returns a parameter dictionary, the key of which is the expert parallel
|
|
|
|
size of every parameter. Since the parameters in data parallelism is replicated
|
|
|
|
in each GPU, we set their ep_size to 1.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (:class:`torch.nn.Module`): A pyTorch `nn.Module` from which we get dict.
|
|
|
|
"""
|
|
|
|
epsize_param_dict = dict()
|
|
|
|
for param in model.parameters():
|
|
|
|
if not is_moe_tensor(param):
|
|
|
|
ep_size = 1 # set ep_size to 1 for dp parameters
|
|
|
|
else:
|
|
|
|
ep_size = get_ep_size(param)
|
|
|
|
if ep_size not in epsize_param_dict:
|
|
|
|
epsize_param_dict[ep_size] = []
|
|
|
|
epsize_param_dict[ep_size].append(param)
|
|
|
|
|
|
|
|
return epsize_param_dict
|
|
|
|
|
|
|
|
|
|
|
|
def sync_moe_model_param(model: nn.Module):
|
|
|
|
"""Make sure model parameters are consistent in MoE parallel context.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
|
|
|
|
"""
|
|
|
|
param_dict = get_moe_epsize_param_dict(model)
|
|
|
|
|
|
|
|
# synchronize the parameters whose dp_group is the whole world
|
|
|
|
if 1 in param_dict:
|
|
|
|
for param in param_dict[1]:
|
|
|
|
dist.broadcast(param, src=0)
|
|
|
|
|
|
|
|
for ep_size in param_dict:
|
|
|
|
# When ep_size = world_size, communication is not needed
|
|
|
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
|
|
|
|
for param in param_dict[ep_size]:
|
|
|
|
src_rank = get_dp_group_ranks(param)[0]
|
|
|
|
dist.broadcast(param, src=src_rank, group=get_dp_group(param))
|
|
|
|
|
|
|
|
|
|
|
|
def set_moe_args(config: Any, args: dict):
|
|
|
|
for k, v in args.items():
|
|
|
|
setattr(config, k, v)
|
|
|
|
|
|
|
|
|
|
|
|
def create_ep_hierarchical_group(
|
|
|
|
ep_group_ranks: List[int],
|
|
|
|
nproc_per_node: Optional[int] = None,
|
|
|
|
) -> Tuple[int, dist.ProcessGroup, Optional[dist.ProcessGroup]]:
|
|
|
|
"""
|
|
|
|
e.g., If ep_group = [1, 2, 5, 6], and nproc_per_node = 4
|
|
|
|
Then, ep_intra_group = [1, 2] & [5, 6], ep_inter_group = [1, 5] & None
|
|
|
|
"""
|
|
|
|
assert dist.is_initialized(), "Please initialize torch.distributed first."
|
|
|
|
rank = dist.get_rank()
|
|
|
|
if nproc_per_node is None:
|
|
|
|
nproc_per_node = os.environ.get("LOCAL_WORLD_SIZE")
|
|
|
|
assert nproc_per_node is not None, "Please use torchrun to launch the job, or specify nproc_per_node manually."
|
|
|
|
nproc_per_node = int(nproc_per_node)
|
|
|
|
else:
|
|
|
|
assert dist.get_world_size() % nproc_per_node == 0, \
|
|
|
|
"nproc_per_node should be a divisor of world_size."
|
|
|
|
num_node = dist.get_world_size() // nproc_per_node
|
|
|
|
|
|
|
|
intra_src_rank = None
|
|
|
|
ep_intra_node_group = None
|
|
|
|
for i in range(num_node):
|
|
|
|
ep_intra_ranks = [
|
|
|
|
i * nproc_per_node + j
|
|
|
|
for j in range(nproc_per_node)
|
|
|
|
if j in ep_group_ranks
|
|
|
|
]
|
|
|
|
group = dist.new_group(ep_intra_ranks)
|
|
|
|
if rank in ep_intra_ranks:
|
|
|
|
assert ep_intra_node_group is None
|
|
|
|
ep_intra_node_group = group
|
|
|
|
intra_src_rank = ep_intra_ranks[0]
|
|
|
|
|
|
|
|
ep_inter_node_group = None
|
|
|
|
ep_inter_ranks = [
|
|
|
|
ep_group_ranks[0] + i * nproc_per_node
|
|
|
|
for i in range(num_node)
|
|
|
|
]
|
|
|
|
if len(ep_inter_ranks) > 1:
|
|
|
|
group = dist.new_group(ep_inter_ranks)
|
|
|
|
if rank in ep_inter_ranks:
|
|
|
|
ep_inter_node_group = group
|
|
|
|
|
|
|
|
return intra_src_rank, ep_intra_node_group, ep_inter_node_group
|