mirror of https://github.com/hpcaitech/ColossalAI
50 lines
1.8 KiB
Python
50 lines
1.8 KiB
Python
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import gc
|
||
|
|
||
|
import psutil
|
||
|
import torch
|
||
|
|
||
|
from colossalai.context.parallel_mode import ParallelMode
|
||
|
from colossalai.core import global_context as gpc
|
||
|
from colossalai.logging import get_global_dist_logger
|
||
|
|
||
|
|
||
|
def bytes_to_GB(val, decimal=2):
|
||
|
'''A byte-to-Gigabyte converter, defaultly using binary notation.
|
||
|
|
||
|
:param val: X bytes to convert
|
||
|
:return: X' Gb
|
||
|
'''
|
||
|
return round(val / (1024 * 1024 * 1024), decimal)
|
||
|
|
||
|
|
||
|
def report_memory_usage(message):
|
||
|
'''Calculate and print RAM usage (in GB)
|
||
|
|
||
|
:param message: a prefix message to add in the log
|
||
|
:type message: str
|
||
|
:raises EnvironmentError: raise error if no distributed environment has been initialized
|
||
|
'''
|
||
|
if not gpc.is_initialized(ParallelMode.GLOBAL):
|
||
|
raise EnvironmentError("No distributed environment is initialized")
|
||
|
|
||
|
# python doesn't do real-time garbage collection so do it explicitly to get the correct RAM reports
|
||
|
gc.collect()
|
||
|
vm_stats = psutil.virtual_memory()
|
||
|
vm_used = bytes_to_GB(vm_stats.total - vm_stats.available)
|
||
|
|
||
|
gpu_allocated = bytes_to_GB(torch.cuda.memory_allocated())
|
||
|
gpu_max_allocated = bytes_to_GB(torch.cuda.max_memory_allocated())
|
||
|
gpu_cached = bytes_to_GB(torch.cuda.memory_cached())
|
||
|
gpu_max_cached = bytes_to_GB(torch.cuda.max_memory_cached())
|
||
|
|
||
|
get_global_dist_logger().info(
|
||
|
f"{message} - GPU: allocated {gpu_allocated}GB, max allocated {gpu_max_allocated}GB, cached: {gpu_cached} GB, "
|
||
|
f"max cached: {gpu_max_cached}GB, CPU Virtual Memory: used = {vm_used}GB, percent = {vm_stats.percent}%")
|
||
|
|
||
|
# get the peak memory to report correct data, so reset the counter for the next call
|
||
|
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
|
||
|
torch.cuda.reset_peak_memory_stats()
|