mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
256 lines
11 KiB
256 lines
11 KiB
3 years ago
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import math
|
||
|
import os
|
||
|
|
||
|
import torch.distributed as dist
|
||
|
|
||
|
from colossalai.constants import TESSERACT_DIM, TESSERACT_DEP
|
||
|
from colossalai.context import Config
|
||
|
from colossalai.core import global_context as gpc
|
||
|
from colossalai.registry import DIST_GROUP_INITIALIZER
|
||
|
from .process_group_initializer import ProcessGroupInitializer
|
||
|
from ..parallel_mode import ParallelMode
|
||
|
|
||
|
|
||
|
def _check_tesseract_env_var(tesseract_dim: int,
|
||
|
tesseract_dep: int):
|
||
|
# check environment variable for TESSERACT
|
||
|
env_tesseract_dim = os.environ.get(TESSERACT_DIM, None)
|
||
|
env_tesseract_dep = os.environ.get(TESSERACT_DEP, None)
|
||
|
|
||
|
if env_tesseract_dim and env_tesseract_dep:
|
||
|
assert int(env_tesseract_dim) == tesseract_dim, \
|
||
|
'TESSERACT_DIM has been set in the current environment and ' \
|
||
|
'does not match with the value passed to this initialized'
|
||
|
assert int(env_tesseract_dep) == tesseract_dep, \
|
||
|
'TESSERACT_DEP has been set in the current environment and ' \
|
||
|
'does not match with the value passed to this initialized'
|
||
|
else:
|
||
|
os.environ[TESSERACT_DIM] = str(tesseract_dim)
|
||
|
os.environ[TESSERACT_DEP] = str(tesseract_dep)
|
||
|
|
||
|
|
||
|
# i row j col k dep
|
||
|
class Initializer_2p5D_ROW(ProcessGroupInitializer):
|
||
|
'''2p5d tensor parallel initialization among rows.
|
||
|
'''
|
||
|
|
||
|
def __init__(self,
|
||
|
tesseract_dim: int,
|
||
|
tesseract_dep: int,
|
||
|
*args):
|
||
|
super(Initializer_2p5D_ROW, self).__init__(*args)
|
||
|
|
||
|
self.tensor_parallel_size = gpc.tensor_parallel_size
|
||
|
self.num_group = self.world_size // self.tensor_parallel_size
|
||
|
self.tesseract_dep = tesseract_dep
|
||
|
self.tesseract_dim = tesseract_dim
|
||
|
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||
|
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||
|
|
||
|
def init_dist_group(self):
|
||
|
'''Initialize 2p5D tensor row parallel groups, and assign local_ranks and groups to each gpu.
|
||
|
|
||
|
:return: 2p5D tensor row parallelism's information
|
||
|
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||
|
'''
|
||
|
local_rank = None
|
||
|
ranks_in_group = None
|
||
|
process_group = None
|
||
|
group_world_size = None
|
||
|
mode = ParallelMode.PARALLEL_2P5D_ROW
|
||
|
|
||
|
for h in range(self.num_group):
|
||
|
for j in range(self.tesseract_dim):
|
||
|
for k in range(self.tesseract_dep):
|
||
|
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
|
||
|
j + self.tesseract_dim * k) for i in range(self.tesseract_dim)]
|
||
|
group = dist.new_group(ranks)
|
||
|
|
||
|
if self.rank in ranks:
|
||
|
local_rank = ranks.index(self.rank)
|
||
|
group_world_size = len(ranks)
|
||
|
process_group = group
|
||
|
ranks_in_group = ranks
|
||
|
|
||
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||
|
|
||
|
|
||
|
class Initializer_2p5D_Col(ProcessGroupInitializer):
|
||
|
'''2p5d tensor parallel initialization among cols.
|
||
|
'''
|
||
|
def __init__(self,
|
||
|
tesseract_dim: int,
|
||
|
tesseract_dep: int,
|
||
|
*args):
|
||
|
super(Initializer_2p5D_Col, self).__init__(*args)
|
||
|
|
||
|
self.tensor_parallel_size = gpc.tensor_parallel_size
|
||
|
self.num_group = self.world_size // self.tensor_parallel_size
|
||
|
self.tesseract_dep = tesseract_dep
|
||
|
self.tesseract_dim = tesseract_dim
|
||
|
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||
|
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||
|
|
||
|
def init_dist_group(self):
|
||
|
'''Initialize 2p5D tensor col parallel groups, and assign local_ranks and groups to each gpu.
|
||
|
|
||
|
:return: 2p5D tensor col parallelism's information
|
||
|
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||
|
'''
|
||
|
local_rank = None
|
||
|
ranks_in_group = None
|
||
|
process_group = None
|
||
|
group_world_size = None
|
||
|
mode = ParallelMode.PARALLEL_2P5D_COL
|
||
|
|
||
|
for h in range(self.num_group):
|
||
|
for i in range(self.tesseract_dim):
|
||
|
for k in range(self.tesseract_dep):
|
||
|
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
|
||
|
j + self.tesseract_dim * k) for j in range(self.tesseract_dim)]
|
||
|
group = dist.new_group(ranks)
|
||
|
|
||
|
if self.rank in ranks:
|
||
|
local_rank = ranks.index(self.rank)
|
||
|
group_world_size = len(ranks)
|
||
|
process_group = group
|
||
|
ranks_in_group = ranks
|
||
|
|
||
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||
|
|
||
|
|
||
|
class Initializer_2p5D_Dep(ProcessGroupInitializer):
|
||
|
'''2p5D tensor parallel initialization among depths.
|
||
|
'''
|
||
|
def __init__(self,
|
||
|
tesseract_dim: int,
|
||
|
tesseract_dep: int,
|
||
|
*args):
|
||
|
super(Initializer_2p5D_Dep, self).__init__(*args)
|
||
|
|
||
|
self.tensor_parallel_size = gpc.tensor_parallel_size
|
||
|
self.num_group = self.world_size // self.tensor_parallel_size
|
||
|
self.tesseract_dep = tesseract_dep
|
||
|
self.tesseract_dim = tesseract_dim
|
||
|
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||
|
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||
|
|
||
|
def init_dist_group(self):
|
||
|
'''Initialize 2p5D tensor depth parallel groups, and assign local_ranks and groups to each gpu.
|
||
|
|
||
|
:return: 2p5D tensor depth parallelism's information
|
||
|
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||
|
'''
|
||
|
local_rank = None
|
||
|
ranks_in_group = None
|
||
|
process_group = None
|
||
|
group_world_size = None
|
||
|
mode = ParallelMode.PARALLEL_2P5D_DEP
|
||
|
|
||
|
for h in range(self.num_group):
|
||
|
for i in range(self.tesseract_dim):
|
||
|
for j in range(self.tesseract_dim):
|
||
|
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
|
||
|
j + self.tesseract_dim * k) for k in range(self.tesseract_dep)]
|
||
|
group = dist.new_group(ranks)
|
||
|
|
||
|
if self.rank in ranks:
|
||
|
local_rank = ranks.index(self.rank)
|
||
|
group_world_size = len(ranks)
|
||
|
process_group = group
|
||
|
ranks_in_group = ranks
|
||
|
|
||
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||
|
|
||
|
|
||
|
# i row j col k dep
|
||
|
class Initializer_2p5D_XZ(ProcessGroupInitializer):
|
||
|
'''2p5d tensor parallel initialization among cols times dep.
|
||
|
'''
|
||
|
def __init__(self,
|
||
|
tesseract_dim: int,
|
||
|
tesseract_dep: int,
|
||
|
*args):
|
||
|
super(Initializer_2p5D_XZ, self).__init__(*args)
|
||
|
|
||
|
self.tensor_parallel_size = gpc.tensor_parallel_size
|
||
|
self.num_group = self.world_size // self.tensor_parallel_size
|
||
|
self.tesseract_dep = tesseract_dep
|
||
|
self.tesseract_dim = tesseract_dim
|
||
|
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||
|
"Tensor parallel size should be depth * dim ** 2 in 2.5D parallel"
|
||
|
|
||
|
def init_dist_group(self):
|
||
|
'''Initialize 2p5D tensor colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||
|
|
||
|
:return: 2p5D tensor colXdepth parallelism's information
|
||
|
:rtype: tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||
|
'''
|
||
|
local_rank = None
|
||
|
ranks_in_group = None
|
||
|
process_group = None
|
||
|
group_world_size = None
|
||
|
mode = ParallelMode.PARALLEL_2P5D_XZ
|
||
|
|
||
|
for h in range(self.num_group):
|
||
|
for i in range(self.tesseract_dim):
|
||
|
ranks = [h * self.tensor_parallel_size + i + self.tesseract_dim * (
|
||
|
j + self.tesseract_dim * k) for k in range(self.tesseract_dep) for j in
|
||
|
range(self.tesseract_dim)]
|
||
|
group = dist.new_group(ranks)
|
||
|
|
||
|
if self.rank in ranks:
|
||
|
local_rank = ranks.index(self.rank)
|
||
|
group_world_size = len(ranks)
|
||
|
process_group = group
|
||
|
ranks_in_group = ranks
|
||
|
|
||
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
||
|
|
||
|
|
||
|
@DIST_GROUP_INITIALIZER.register_module
|
||
|
class Initializer_2p5D(ProcessGroupInitializer):
|
||
|
"""
|
||
|
Serve as the single entry point to Tesseract parallel initialization.
|
||
|
"""
|
||
|
|
||
|
def __init__(self,
|
||
|
rank: int,
|
||
|
world_size: int,
|
||
|
config: Config,
|
||
|
data_parallel_size: int,
|
||
|
pipeline_parlalel_size: int,
|
||
|
tensor_parallel_size: int,
|
||
|
depth: int
|
||
|
):
|
||
|
args = (rank, world_size, config, data_parallel_size, pipeline_parlalel_size, tensor_parallel_size)
|
||
|
super().__init__(*args)
|
||
|
self.num_group = self.world_size // self.tensor_parallel_size
|
||
|
self.tesseract_dim = int(math.sqrt(self.tensor_parallel_size / depth))
|
||
|
self.tesseract_dep = depth
|
||
|
|
||
|
assert self.tensor_parallel_size == self.tesseract_dim ** 2 * self.tesseract_dep, \
|
||
|
"2.5D tesseract dim should equal to (tensor parallel size / tesseract dep) ^ 0.5"
|
||
|
_check_tesseract_env_var(self.tesseract_dim, self.tesseract_dep)
|
||
|
|
||
|
self.col_initializer = Initializer_2p5D_Col(self.tesseract_dim, self.tesseract_dep, *args)
|
||
|
self.row_initializer = Initializer_2p5D_ROW(self.tesseract_dim, self.tesseract_dep, *args)
|
||
|
self.dep_initializer = Initializer_2p5D_Dep(self.tesseract_dim, self.tesseract_dep, *args)
|
||
|
self.xz_initializer = Initializer_2p5D_XZ(self.tesseract_dim, self.tesseract_dep, *args)
|
||
|
|
||
|
def init_dist_group(self):
|
||
|
'''Initialize 2p5D tensor row, col, depth, and colXdepth parallel groups, and assign local_ranks and groups to each gpu.
|
||
|
|
||
|
:return: Whole 2p5D tensor parallelism's information
|
||
|
:rtype: list of tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
||
|
'''
|
||
|
parallel_setting = []
|
||
|
parallel_setting.append(self.col_initializer.init_dist_group())
|
||
|
parallel_setting.append(self.row_initializer.init_dist_group())
|
||
|
parallel_setting.append(self.dep_initializer.init_dist_group())
|
||
|
parallel_setting.append(self.xz_initializer.init_dist_group())
|
||
|
return parallel_setting
|