ColossalAI/tests/test_trainer/test_pipeline/model/resnet.py

164 lines
5.3 KiB
Python
Raw Normal View History

2021-12-16 02:32:08 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import List, Optional
import torch
import torch.nn as nn
from torch import Tensor
from colossalai.registry import LAYERS
from colossalai.registry import MODELS
from colossalai.nn.model import ModelFromConfig
@MODELS.register_module
class VanillaResNet(ModelFromConfig):
"""ResNet from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
"""
def __init__(
self,
num_cls: int,
block_type: str,
layers: List[int],
norm_layer_type: str = 'BatchNorm2d',
in_channels: int = 3,
groups: int = 1,
width_per_group: int = 64,
zero_init_residual: bool = False,
replace_stride_with_dilation: Optional[List[bool]] = None,
dilations=(1, 1, 1, 1)
) -> None:
super().__init__()
self.inplanes = 64
self.zero_init_residual = zero_init_residual
self.blocks = layers
self.block_expansion = LAYERS.get_module(block_type).expansion
self.dilations = dilations
self.reslayer_common_cfg = dict(
type='ResLayer',
block_type=block_type,
norm_layer_type=norm_layer_type,
groups=groups,
base_width=width_per_group
)
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.layers_cfg = [
# conv1
dict(type='Conv2d',
in_channels=in_channels,
out_channels=self.inplanes,
kernel_size=7,
stride=2,
padding=3,
bias=False),
# bn1
dict(
type=norm_layer_type,
num_features=self.inplanes
),
# relu
dict(
type='ReLU',
inplace=True
),
# maxpool
dict(
type='MaxPool2d',
kernel_size=3,
stride=2,
padding=1
),
# layer 1
dict(
inplanes=self.inplanes,
planes=64,
blocks=self.blocks[0],
dilation=self.dilations[0],
**self.reslayer_common_cfg
),
# layer 2
dict(
inplanes=64 * self.block_expansion,
planes=128,
blocks=self.blocks[1],
stride=2,
dilate=replace_stride_with_dilation[0],
dilation=self.dilations[1],
**self.reslayer_common_cfg
),
# layer 3
dict(
inplanes=128 * self.block_expansion,
planes=256,
blocks=layers[2],
stride=2,
dilate=replace_stride_with_dilation[1],
dilation=self.dilations[2],
**self.reslayer_common_cfg
),
# layer 4
dict(
inplanes=256 * self.block_expansion,
planes=512,
blocks=layers[3], stride=2,
dilate=replace_stride_with_dilation[2],
dilation=self.dilations[3],
**self.reslayer_common_cfg
),
# avg pool
dict(
type='AdaptiveAvgPool2d',
output_size=(1, 1)
),
# flatten
dict(
type='LambdaWrapper',
func=lambda mod, x: torch.flatten(x, 1)
),
# linear
dict(
type='Linear',
in_features=512 * self.block_expansion,
out_features=num_cls
)
]
def forward(self, x: Tensor):
for layer in self.layers:
x = layer(x)
return x
2021-12-16 02:32:08 +00:00
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if self.zero_init_residual:
for m in self.modules():
if isinstance(m, LAYERS.get_module('ResNetBottleneck')):
# type: ignore[arg-type]
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, LAYERS.get_module('ResNetBasicBlock')):
# type: ignore[arg-type]
nn.init.constant_(m.bn2.weight, 0)