mirror of https://github.com/hpcaitech/ColossalAI
58 lines
1.9 KiB
Python
58 lines
1.9 KiB
Python
|
import torch
|
||
|
from colossalai.tensor import ParamOpHook, ChunkManager, TensorState
|
||
|
from enum import Enum
|
||
|
from typing import List
|
||
|
from contextlib import contextmanager
|
||
|
from functools import partial
|
||
|
|
||
|
|
||
|
class TrainingPhase(Enum):
|
||
|
FORWARD = 0
|
||
|
BACKWARD = 1
|
||
|
|
||
|
|
||
|
class ZeROHookV2(ParamOpHook):
|
||
|
|
||
|
def __init__(self, chunk_manager: ChunkManager) -> None:
|
||
|
super().__init__()
|
||
|
self._chunk_manager = chunk_manager
|
||
|
self._training_phase = TrainingPhase.FORWARD
|
||
|
|
||
|
def pre_op(self, params):
|
||
|
for p in params:
|
||
|
self._chunk_manager.trans_tensor_state(p, TensorState.COMPUTE)
|
||
|
self._chunk_manager.exec_lazy_release()
|
||
|
# TODO: evict chunks
|
||
|
for p in params:
|
||
|
self._chunk_manager.access_chunk(p)
|
||
|
|
||
|
def post_op(self, params):
|
||
|
for p in params:
|
||
|
tensor_state = TensorState.HOLD if self._training_phase == TrainingPhase.FORWARD or not p.requires_grad else TensorState.HOLD_AFTER_BWD
|
||
|
self._chunk_manager.trans_tensor_state(p, tensor_state)
|
||
|
self._chunk_manager.add_lazy_release_tensors(params)
|
||
|
|
||
|
def pre_forward(self, params: List[torch.Tensor]) -> None:
|
||
|
self.pre_op(params)
|
||
|
|
||
|
def post_forward(self, params: List[torch.Tensor]) -> None:
|
||
|
self.post_op(params)
|
||
|
|
||
|
def pre_backward(self, params: List[torch.Tensor]) -> None:
|
||
|
self.pre_op(params)
|
||
|
|
||
|
def post_backward(self, params: List[torch.Tensor]) -> None:
|
||
|
self.post_op(params)
|
||
|
|
||
|
@contextmanager
|
||
|
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
|
||
|
try:
|
||
|
old_training_phase = self._training_phase
|
||
|
self._training_phase = training_phase
|
||
|
yield
|
||
|
finally:
|
||
|
self._training_phase = old_training_phase
|
||
|
|
||
|
switch_to_backward = switch_training_phase
|
||
|
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)
|