|
|
|
|
# 3D 张量并行
|
|
|
|
|
|
|
|
|
|
作者: Zhengda Bian, Yongbin Li
|
|
|
|
|
|
|
|
|
|
**前置教程**
|
|
|
|
|
- [定义配置文件](../basics/define_your_config.md)
|
|
|
|
|
- [并行配置](../basics/configure_parallelization.md)
|
|
|
|
|
- [1D 张量并行](./1D_tensor_parallel.md)
|
|
|
|
|
- [2D 张量并行](./2D_tensor_parallel.md)
|
|
|
|
|
|
|
|
|
|
**示例代码**
|
|
|
|
|
- [ColossalAI-Examples - 3D Tensor Parallelism](https://github.com/hpcaitech/ColossalAI-Examples/tree/main/features/tensor_parallel/tensor_parallel_3d.py)
|
|
|
|
|
|
|
|
|
|
**相关论文**
|
|
|
|
|
- [Maximizing Parallelism in Distributed Training for Huge Neural Networks](https://arxiv.org/pdf/2105.14450.pdf)
|
|
|
|
|
|
|
|
|
|
## 引言
|
|
|
|
|
|
|
|
|
|
[3D 张量并行](https://arxiv.org/pdf/2105.14450.pdf) 是一种将神经网络模型的计算并行化,以期望获得最佳通信成本优化的方法。
|
|
|
|
|
|
|
|
|
|
我们还是以线性层 $Y = XA$ 为例。
|
|
|
|
|
给定 $P=q \times q \times q$ 个处理器(必要条件), 如 $q=2$, 我们把输入 $X$ 和权重 $A$ 划分为
|
|
|
|
|
|
|
|
|
|
$$
|
|
|
|
|
\left[\begin{matrix}
|
|
|
|
|
X_{000} & X_{001} \\
|
|
|
|
|
X_{010} & X_{011} \\
|
|
|
|
|
X_{100} & X_{101} \\
|
|
|
|
|
X_{110} & X_{111} \end{matrix}
|
|
|
|
|
\right]
|
|
|
|
|
\text{~and~}
|
|
|
|
|
\left[\begin{matrix}
|
|
|
|
|
A_{000} & A_{001} & A_{010} & A_{011} \\
|
|
|
|
|
A_{100} & A_{101} & A_{110} & A_{111} \end{matrix}
|
|
|
|
|
\right]
|
|
|
|
|
\text{~respectively,}$$
|
|
|
|
|
其中每个 $X_{ijl}$ 和 $A_{lji}$ 都被存储在处理器 $(i,j,l)$ 上, 如下图所示。
|
|
|
|
|
|
|
|
|
|
<center>
|
|
|
|
|
<img src="https://s2.loli.net/2022/02/17/JevO6SED5z4PFdp.png" width = "200" height = "250" />
|
|
|
|
|
<img src="https://s2.loli.net/2022/02/17/qvtwjdfNXMAb4nF.png" width = "200" height = "250" />
|
|
|
|
|
<img src="https://s2.loli.net/2022/02/17/WFzm2N4IwKf1jXZ.png" width = "200" height = "250" />
|
|
|
|
|
<img src="https://s2.loli.net/2022/02/17/r2dZQ4hKxwTuIv6.png" width = "200" height = "250" />
|
|
|
|
|
</center>
|
|
|
|
|
|
|
|
|
|
然后我们在 $(i, 0...q,l)$ 上收集 $X_{ijl}$, 以及在$(0...q, j, l)$ 上收集 $A_{lji}$。
|
|
|
|
|
因此,我们在每个处理器 $(i,j,l)$ 上都有 $X_{il}$ 和 $A_{lj}$ 以获得 $X_{il}A_{lj}$。
|
|
|
|
|
最后,我们在 $(i, j, 0...q)$ 对结果进行 reduce-scatter 得到 $Y_{ijl}$, 形成
|
|
|
|
|
$$
|
|
|
|
|
Y=
|
|
|
|
|
\left[\begin{matrix}
|
|
|
|
|
Y_{000} & Y_{001} \\
|
|
|
|
|
Y_{010} & Y_{011} \\
|
|
|
|
|
Y_{100} & Y_{101} \\
|
|
|
|
|
Y_{110} & Y_{111} \end{matrix}
|
|
|
|
|
\right].
|
|
|
|
|
$$
|
|
|
|
|
|
|
|
|
|
我们还需要注意,在后向传播中, 我们需要 all-gather 梯度 $\dot{Y_{ijl}}$, 然后 reduce-scatter 梯度 $\dot{X_{il}}=\dot{Y_{ij}}A_{lj}^T$ and $\dot{A_{lj}}=X_{il}^T\dot{Y_{ij}}$。
|
|
|
|
|
|
|
|
|
|
## 效率
|
|
|
|
|
给定 $P=q \times q \times q$ 个处理器, 我们展现理论上的计算和内存成本,以及基于环形算法的3D张量并行的前向和后向的通信成本。
|
|
|
|
|
|
|
|
|
|
| 计算 | 内存 (参数) | 内存 (activations) | 通信 (带宽) | 通信 (时延) |
|
|
|
|
|
| :-: | :-: | :-: | :-: | :-: |
|
|
|
|
|
| $O(1/q^3)$ | $O(1/q^3)$ | $O(1/q^3)$ | $O(6(q-1)/q^3)$ | $O(6(q-1))$ |
|
|
|
|
|
|
|
|
|
|
## 使用
|
|
|
|
|
|
|
|
|
|
为了使我们的模型能够实现3D张量并行,例如在8个 GPU 上,我们需要配置如下的并行设置。
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
CONFIG = dict(parallel=dict(
|
|
|
|
|
data=1,
|
|
|
|
|
pipeline=1,
|
|
|
|
|
tensor=dict(size=8, mode='3d'),
|
|
|
|
|
))
|
|
|
|
|
```
|
|
|
|
|
然后 Colossal-AI 会自动对所有来自 `colossalai.nn` 的层应用3D张量并行。
|
|
|
|
|
|
|
|
|
|
让我们定义一个由两层多层感知器 (MLP) 组成的模型,如下所示。
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
import colossalai
|
|
|
|
|
import colossalai.nn as col_nn
|
|
|
|
|
import torch
|
|
|
|
|
from colossalai.utils import print_rank_0
|
|
|
|
|
|
|
|
|
|
class MLP(torch.nn.Module):
|
|
|
|
|
def __init__(self, dim: int = 256):
|
|
|
|
|
super().__init__()
|
|
|
|
|
intermediate_dim = dim * 4
|
|
|
|
|
self.dense_1 = col_nn.Linear(dim, intermediate_dim)
|
|
|
|
|
print_rank_0(f'Weight of the first linear layer: {self.dense_1.weight.shape}')
|
|
|
|
|
self.activation = torch.nn.GELU()
|
|
|
|
|
self.dense_2 = col_nn.Linear(intermediate_dim, dim)
|
|
|
|
|
print_rank_0(f'Weight of the second linear layer: {self.dense_2.weight.shape}')
|
|
|
|
|
self.dropout = col_nn.Dropout(0.1)
|
|
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
|
x = self.dense_1(x)
|
|
|
|
|
print_rank_0(f'Output of the first linear layer: {x.shape}')
|
|
|
|
|
x = self.activation(x)
|
|
|
|
|
x = self.dense_2(x)
|
|
|
|
|
print_rank_0(f'Output of the second linear layer: {x.shape}')
|
|
|
|
|
x = self.dropout(x)
|
|
|
|
|
return x
|
|
|
|
|
```
|
|
|
|
|
在8个 GPU 上启动 Colossal-AI 并建立模型。
|
|
|
|
|
```python
|
|
|
|
|
parser = colossalai.get_default_parser()
|
|
|
|
|
colossalai.launch(config=CONFIG,
|
|
|
|
|
rank=args.rank,
|
|
|
|
|
world_size=args.world_size,
|
|
|
|
|
local_rank=args.local_rank,
|
|
|
|
|
host=args.host,
|
|
|
|
|
port=args.port)
|
|
|
|
|
|
|
|
|
|
m = MLP()
|
|
|
|
|
```
|
|
|
|
|
我们将会看到 MLP 模型中被划分的参数(如权重)的形状。
|
|
|
|
|
```shell
|
|
|
|
|
Weight of the first linear layer: torch.Size([128, 256])
|
|
|
|
|
Weight of the second linear layer: torch.Size([512, 64])
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
第一个线性层的完整权重形状应该为 `[256, 1024]`. 经过3D并行划分后,它在每个 GPU 上变成了 `[128, 256]` 。
|
|
|
|
|
同样地,第二层将权重 `[1024, 256]` 划分为 `[512, 64]`.
|
|
|
|
|
|
|
|
|
|
我们可以用一些随机输入来运行这个模型。
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
|
from colossalai.context import ParallelMode
|
|
|
|
|
from colossalai.core import global_context as gpc
|
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
|
|
|
|
x = torch.randn((16, 256), device=get_current_device())
|
|
|
|
|
# partition input
|
|
|
|
|
torch.distributed.broadcast(x, src=0)
|
|
|
|
|
x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_WEIGHT)]
|
|
|
|
|
x = torch.chunk(x, 2, dim=0)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_INPUT)]
|
|
|
|
|
x = torch.chunk(x, 2, dim=-1)[gpc.get_local_rank(ParallelMode.PARALLEL_3D_OUTPUT)]
|
|
|
|
|
print_rank_0(f'Input: {x.shape}')
|
|
|
|
|
|
|
|
|
|
x = m(x)
|
|
|
|
|
```
|
|
|
|
|
然后我们可以看到 activation 结果的形状。
|
|
|
|
|
```shell
|
|
|
|
|
Input: torch.Size([4, 128])
|
|
|
|
|
Output of the first linear layer: torch.Size([4, 512])
|
|
|
|
|
Output of the second linear layer: torch.Size([4, 128])
|
|
|
|
|
```
|
|
|
|
|
3D并行中的 activation 张量都是同时在$q^2$行和$q$列分割的。例如,第一个线性层的输出是 `[4, 512]`, 而第二层的输出为 `[4, 128]`。
|
|
|
|
|
注意,虽然这里3D并行的结果与2.5D并行的结果形状相同,但每个划分的内容是不同的。
|