|
|
|
import argparse
|
|
|
|
import copy
|
|
|
|
import os
|
|
|
|
from typing import Dict, List
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
|
|
|
from colossal_eval import dataset, models, utils
|
|
|
|
|
|
|
|
import colossalai
|
|
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
from colossalai.shardformer import ShardConfig
|
|
|
|
|
|
|
|
logger = get_dist_logger()
|
|
|
|
|
|
|
|
|
|
|
|
def rm_and_merge(
|
|
|
|
dp_size: int,
|
|
|
|
save_path: str,
|
|
|
|
model_names: List[str],
|
|
|
|
dataset_names: Dict[str, List],
|
|
|
|
dataset_classes: Dict[str, List],
|
|
|
|
) -> None:
|
|
|
|
"""
|
|
|
|
Remove inference result per rank and merge them into one file.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
dp_size: Number of groups for data parallel.
|
|
|
|
save_path: The folder for storing inference results.
|
|
|
|
model_names: Names of models for inference.
|
|
|
|
dataset_names: Names of dataset for inference.
|
|
|
|
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
for model_name in model_names:
|
|
|
|
for dataset_name, categories in dataset_names.items():
|
|
|
|
all_answers_with_dataset_class = {}
|
|
|
|
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
|
|
|
|
|
|
|
|
all_answers = {}
|
|
|
|
for category in categories:
|
|
|
|
all_answers[category] = {"data": []}
|
|
|
|
answers = {"data": []}
|
|
|
|
|
|
|
|
for r in range(dp_size):
|
|
|
|
directory = os.path.join(
|
|
|
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
|
|
|
|
)
|
|
|
|
if not os.path.exists(directory):
|
|
|
|
raise Exception(
|
|
|
|
f"Directory {directory} not found. There may be an error during inference time."
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
rank_answers = utils.jload(directory)
|
|
|
|
answers["data"].extend(rank_answers["data"])
|
|
|
|
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
|
|
|
|
|
|
|
|
for r in range(dp_size):
|
|
|
|
try:
|
|
|
|
directory = os.path.join(
|
|
|
|
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
|
|
|
|
)
|
|
|
|
os.remove(directory)
|
|
|
|
except Exception as e:
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
all_answers[category] = answers
|
|
|
|
|
|
|
|
all_answers_with_dataset_class["inference_results"] = all_answers
|
|
|
|
|
|
|
|
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
|
|
|
|
utils.jdump(
|
|
|
|
all_answers_with_dataset_class,
|
|
|
|
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.info(f"Save inference results of model {model_name} for all dataset.")
|
|
|
|
logger.info(f"Save inference results of all models for all dataset.")
|
|
|
|
|
|
|
|
|
|
|
|
def main(args):
|
|
|
|
colossalai.launch_from_torch(seed=42)
|
|
|
|
world_size = dist.get_world_size()
|
|
|
|
|
|
|
|
rank = dist.get_rank()
|
|
|
|
DP_AXIS = 0
|
|
|
|
TP_AXIS = 1
|
|
|
|
|
|
|
|
dp_size = world_size // args.tp_size
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
logger.info("Setting TP and DP...")
|
|
|
|
logger.info(f"TP size: {args.tp_size}, DP size: {dp_size}")
|
|
|
|
|
|
|
|
if world_size % args.tp_size != 0:
|
|
|
|
raise Exception(
|
|
|
|
f"TP size is {args.tp_size} while world size is {world_size}! Please make sure world size is a multiple of TP size!"
|
|
|
|
)
|
|
|
|
|
|
|
|
pg_mesh = ProcessGroupMesh(dp_size, args.tp_size)
|
|
|
|
tp_group = pg_mesh.get_group_along_axis(TP_AXIS)
|
|
|
|
|
|
|
|
coordinates = pg_mesh._coord
|
|
|
|
dp_rank = coordinates[DP_AXIS]
|
|
|
|
tp_rank = coordinates[TP_AXIS]
|
|
|
|
|
|
|
|
shard_config = (
|
|
|
|
ShardConfig(tensor_parallel_process_group=tp_group, enable_tensor_parallelism=args.tp_size > 1)
|
|
|
|
if args.tp_size > 1
|
|
|
|
else None
|
|
|
|
)
|
|
|
|
|
|
|
|
inference_data = {}
|
|
|
|
dataset_classes = {}
|
|
|
|
debug_args = {}
|
|
|
|
few_shot_args = {}
|
|
|
|
multiturn_args = {}
|
|
|
|
|
|
|
|
config = utils.jload(args.config)
|
|
|
|
|
|
|
|
model_parameters = config["model"]
|
|
|
|
dataset_parameters = config["dataset"]
|
|
|
|
|
|
|
|
for dataset_parameter in dataset_parameters:
|
|
|
|
path = dataset_parameter["path"]
|
|
|
|
save_path = dataset_parameter["save_path"]
|
|
|
|
dataset_name = dataset_parameter["name"]
|
|
|
|
debug_args[dataset_name] = dataset_parameter["debug"]
|
|
|
|
few_shot_args[dataset_name] = dataset_parameter["few_shot"]
|
|
|
|
forward_only = dataset_parameter.get("forward_only", False)
|
|
|
|
load_train = dataset_parameter.get("load_train", False)
|
|
|
|
load_reference = dataset_parameter.get("load_reference", False)
|
|
|
|
|
|
|
|
if not args.load_dataset:
|
|
|
|
if os.path.exists(save_path):
|
|
|
|
dataset_ = utils.jload(save_path)
|
|
|
|
inference_data[dataset_name] = dataset_["test"]
|
|
|
|
else:
|
|
|
|
raise Exception(
|
|
|
|
"Can't find the converted dataset. You may set load_dataset True to store the dataset first."
|
|
|
|
)
|
|
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
|
|
|
|
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
|
|
|
|
if not issubclass(dataset_class, dataset.BaseDataset):
|
|
|
|
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
|
|
|
|
|
|
|
|
dataset_ = dataset_class(path, logger, dataset_parameter["few_shot"], forward_only, load_train, load_reference)
|
|
|
|
|
|
|
|
dataset_.save(save_path)
|
|
|
|
|
|
|
|
if hasattr(dataset_, "multiturn") and dataset_.multiturn:
|
|
|
|
multiturn_args[dataset_name] = True
|
|
|
|
logger.info(f"{dataset_parameter['dataset_class']} is a multiturn dataset.")
|
|
|
|
else:
|
|
|
|
multiturn_args[dataset_name] = False
|
|
|
|
|
|
|
|
inference_data[dataset_name] = dataset_.dataset["test"]
|
|
|
|
|
|
|
|
if load_train and "train" in dataset_.dataset:
|
|
|
|
new_dataset_name = f"{dataset_name}_train"
|
|
|
|
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
|
|
|
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
|
|
|
inference_data[new_dataset_name] = dataset_.dataset["train"]
|
|
|
|
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
|
|
|
|
|
|
|
if load_reference and "reference" in dataset_.dataset:
|
|
|
|
new_dataset_name = f"{dataset_name}_reference"
|
|
|
|
debug_args[new_dataset_name] = dataset_parameter["debug"]
|
|
|
|
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
|
|
|
|
inference_data[new_dataset_name] = dataset_.dataset["reference"]
|
|
|
|
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
|
|
|
|
|
|
|
|
if rank == 0:
|
|
|
|
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
|
|
|
|
|
|
|
|
for model_parameter in model_parameters:
|
|
|
|
model_name = model_parameter["name"]
|
|
|
|
model_class = eval(f"models.{model_parameter['model_class']}")
|
|
|
|
paramerters = model_parameter["parameters"]
|
|
|
|
paramerters.update({"logger": logger})
|
|
|
|
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
|
|
|
|
paramerters.update({"shard_config": shard_config})
|
|
|
|
|
|
|
|
model_ = model_class(**paramerters)
|
|
|
|
if not issubclass(model_class, models.BaseModel):
|
|
|
|
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
|
|
|
|
|
|
|
|
for dataset_name, split_data in inference_data.items():
|
|
|
|
start = 0
|
|
|
|
prev_questions = None
|
|
|
|
for category, category_data in split_data.items():
|
|
|
|
num_turn = category_data["inference_kwargs"].get("turns", 1)
|
|
|
|
|
|
|
|
if few_shot_args[dataset_name] and category_data["inference_kwargs"].get("few_shot_data", None) is None:
|
|
|
|
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
|
|
|
|
|
|
|
|
answers_to_dump = copy.deepcopy(category_data)
|
|
|
|
partition_size = len(category_data["data"]) // dp_size
|
|
|
|
redundant = len(category_data["data"]) % dp_size
|
|
|
|
|
|
|
|
# Ensure that the amount of data for inference is as consistent as possible across different processes.
|
|
|
|
lengths = [partition_size for _ in range(dp_size)]
|
|
|
|
for j in range(redundant):
|
|
|
|
lengths[(j + start) % dp_size] += 1
|
|
|
|
|
|
|
|
start = (start + redundant) % dp_size
|
|
|
|
|
|
|
|
for turn in range(num_turn):
|
|
|
|
if turn == 0:
|
|
|
|
questions = category_data["data"][
|
|
|
|
sum(lengths[0:dp_rank]) : sum(lengths[0:dp_rank]) + lengths[dp_rank]
|
|
|
|
]
|
|
|
|
else:
|
|
|
|
questions = prev_questions
|
|
|
|
|
|
|
|
answers_per_rank = model_.inference(
|
|
|
|
questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name]
|
|
|
|
)
|
|
|
|
prev_questions = answers_per_rank
|
|
|
|
|
|
|
|
answers_to_dump["data"] = answers_per_rank
|
|
|
|
|
|
|
|
if tp_rank == 0:
|
|
|
|
utils.jdump(
|
|
|
|
answers_to_dump,
|
|
|
|
os.path.join(
|
|
|
|
args.inference_save_path,
|
|
|
|
model_name,
|
|
|
|
f"{dataset_name}_{category}_inference_results_dp_rank{dp_rank}.json",
|
|
|
|
),
|
|
|
|
)
|
|
|
|
|
|
|
|
logger.info(f"Rank {rank} peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB")
|
|
|
|
|
|
|
|
del model_
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
dist.barrier()
|
|
|
|
if rank == 0:
|
|
|
|
model_names = [model_parameter["name"] for model_parameter in model_parameters]
|
|
|
|
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
|
|
|
|
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description="ColossalEval inference process.")
|
|
|
|
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
|
|
|
|
parser.add_argument("--load_dataset", default=False, action="store_true")
|
|
|
|
parser.add_argument("--inference_save_path", type=str, default=None, help="path to save inference results")
|
|
|
|
parser.add_argument("--tp_size", type=int, default=1, help="tensor parallel size, used for large model inference")
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
main(args)
|