You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalEval/examples/gpt_evaluation/inference.py

259 lines
10 KiB

import argparse
import copy
import os
from typing import Dict, List
import torch
import torch.distributed as dist
from colossal_eval import dataset, models, utils
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.logging import get_dist_logger
from colossalai.shardformer import ShardConfig
logger = get_dist_logger()
def rm_and_merge(
dp_size: int,
save_path: str,
model_names: List[str],
dataset_names: Dict[str, List],
dataset_classes: Dict[str, List],
) -> None:
"""
Remove inference result per rank and merge them into one file.
Args:
dp_size: Number of groups for data parallel.
save_path: The folder for storing inference results.
model_names: Names of models for inference.
dataset_names: Names of dataset for inference.
dataset_classes: Dataset class for different inference results. We need to save dataset class to smooth the evaluation process.
"""
for model_name in model_names:
for dataset_name, categories in dataset_names.items():
all_answers_with_dataset_class = {}
all_answers_with_dataset_class["dataset_class"] = dataset_classes[dataset_name]
all_answers = {}
for category in categories:
all_answers[category] = {"data": []}
answers = {"data": []}
for r in range(dp_size):
directory = os.path.join(
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
)
if not os.path.exists(directory):
raise Exception(
f"Directory {directory} not found. There may be an error during inference time."
)
else:
rank_answers = utils.jload(directory)
answers["data"].extend(rank_answers["data"])
answers["inference_kwargs"] = rank_answers["inference_kwargs"]
for r in range(dp_size):
try:
directory = os.path.join(
save_path, model_name, f"{dataset_name}_{category}_inference_results_dp_rank{r}.json"
)
os.remove(directory)
except Exception as e:
print(e)
all_answers[category] = answers
all_answers_with_dataset_class["inference_results"] = all_answers
logger.info(f"Save inference results of model {model_name} on dataset {dataset_name}.")
utils.jdump(
all_answers_with_dataset_class,
os.path.join(save_path, model_name, f"{dataset_name}_inference_results.json"),
)
logger.info(f"Save inference results of model {model_name} for all dataset.")
logger.info(f"Save inference results of all models for all dataset.")
def main(args):
colossalai.launch_from_torch(seed=42)
world_size = dist.get_world_size()
rank = dist.get_rank()
DP_AXIS = 0
TP_AXIS = 1
dp_size = world_size // args.tp_size
if rank == 0:
logger.info("Setting TP and DP...")
logger.info(f"TP size: {args.tp_size}, DP size: {dp_size}")
if world_size % args.tp_size != 0:
raise Exception(
f"TP size is {args.tp_size} while world size is {world_size}! Please make sure world size is a multiple of TP size!"
)
pg_mesh = ProcessGroupMesh(dp_size, args.tp_size)
tp_group = pg_mesh.get_group_along_axis(TP_AXIS)
coordinates = pg_mesh._coord
dp_rank = coordinates[DP_AXIS]
tp_rank = coordinates[TP_AXIS]
shard_config = (
ShardConfig(tensor_parallel_process_group=tp_group, enable_tensor_parallelism=args.tp_size > 1)
if args.tp_size > 1
else None
)
inference_data = {}
dataset_classes = {}
debug_args = {}
few_shot_args = {}
multiturn_args = {}
config = utils.jload(args.config)
model_parameters = config["model"]
dataset_parameters = config["dataset"]
for dataset_parameter in dataset_parameters:
path = dataset_parameter["path"]
save_path = dataset_parameter["save_path"]
dataset_name = dataset_parameter["name"]
debug_args[dataset_name] = dataset_parameter["debug"]
few_shot_args[dataset_name] = dataset_parameter["few_shot"]
forward_only = dataset_parameter.get("forward_only", False)
load_train = dataset_parameter.get("load_train", False)
load_reference = dataset_parameter.get("load_reference", False)
if not args.load_dataset:
if os.path.exists(save_path):
dataset_ = utils.jload(save_path)
inference_data[dataset_name] = dataset_["test"]
else:
raise Exception(
"Can't find the converted dataset. You may set load_dataset True to store the dataset first."
)
continue
dataset_classes[dataset_name] = dataset_parameter["dataset_class"]
dataset_class = eval(f"dataset.{dataset_parameter['dataset_class']}")
if not issubclass(dataset_class, dataset.BaseDataset):
raise ValueError(f"Dataset class {dataset_parameter['dataset_class']} is not a subclass of BaseDataset.")
dataset_ = dataset_class(path, logger, dataset_parameter["few_shot"], forward_only, load_train, load_reference)
dataset_.save(save_path)
if hasattr(dataset_, "multiturn") and dataset_.multiturn:
multiturn_args[dataset_name] = True
logger.info(f"{dataset_parameter['dataset_class']} is a multiturn dataset.")
else:
multiturn_args[dataset_name] = False
inference_data[dataset_name] = dataset_.dataset["test"]
if load_train and "train" in dataset_.dataset:
new_dataset_name = f"{dataset_name}_train"
debug_args[new_dataset_name] = dataset_parameter["debug"]
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
inference_data[new_dataset_name] = dataset_.dataset["train"]
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
if load_reference and "reference" in dataset_.dataset:
new_dataset_name = f"{dataset_name}_reference"
debug_args[new_dataset_name] = dataset_parameter["debug"]
few_shot_args[new_dataset_name] = dataset_parameter["few_shot"]
inference_data[new_dataset_name] = dataset_.dataset["reference"]
dataset_classes[new_dataset_name] = dataset_parameter["dataset_class"]
if rank == 0:
logger.info(f"Dataset for inference are: {list(inference_data.keys())}")
for model_parameter in model_parameters:
model_name = model_parameter["name"]
model_class = eval(f"models.{model_parameter['model_class']}")
paramerters = model_parameter["parameters"]
paramerters.update({"logger": logger})
paramerters.update({"prompt_template": utils.prompt_templates[paramerters["prompt_template"]]})
paramerters.update({"shard_config": shard_config})
model_ = model_class(**paramerters)
if not issubclass(model_class, models.BaseModel):
raise ValueError(f"Model class {model_parameter['model_class']} is not a subclass of BaseModel.")
for dataset_name, split_data in inference_data.items():
start = 0
prev_questions = None
for category, category_data in split_data.items():
num_turn = category_data["inference_kwargs"].get("turns", 1)
if few_shot_args[dataset_name] and category_data["inference_kwargs"].get("few_shot_data", None) is None:
raise Exception(f"Dataset {dataset_name} doesn't have few-shot data for category {category}!")
answers_to_dump = copy.deepcopy(category_data)
partition_size = len(category_data["data"]) // dp_size
redundant = len(category_data["data"]) % dp_size
# Ensure that the amount of data for inference is as consistent as possible across different processes.
lengths = [partition_size for _ in range(dp_size)]
for j in range(redundant):
lengths[(j + start) % dp_size] += 1
start = (start + redundant) % dp_size
for turn in range(num_turn):
if turn == 0:
questions = category_data["data"][
sum(lengths[0:dp_rank]) : sum(lengths[0:dp_rank]) + lengths[dp_rank]
]
else:
questions = prev_questions
answers_per_rank = model_.inference(
questions, inference_kwargs=category_data["inference_kwargs"], debug=debug_args[dataset_name]
)
prev_questions = answers_per_rank
answers_to_dump["data"] = answers_per_rank
if tp_rank == 0:
utils.jdump(
answers_to_dump,
os.path.join(
args.inference_save_path,
model_name,
f"{dataset_name}_{category}_inference_results_dp_rank{dp_rank}.json",
),
)
logger.info(f"Rank {rank} peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.3f} GB")
del model_
torch.cuda.empty_cache()
dist.barrier()
if rank == 0:
model_names = [model_parameter["name"] for model_parameter in model_parameters]
dataset_names = {key: list(inference_data[key].keys()) for key in inference_data}
rm_and_merge(dp_size, args.inference_save_path, model_names, dataset_names, dataset_classes)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ColossalEval inference process.")
parser.add_argument("--config", type=str, default=None, required=True, help="path to config file")
parser.add_argument("--load_dataset", default=False, action="store_true")
parser.add_argument("--inference_save_path", type=str, default=None, help="path to save inference results")
parser.add_argument("--tp_size", type=int, default=1, help="tensor parallel size, used for large model inference")
args = parser.parse_args()
main(args)