You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/utils/profiler/legacy/prof_utils.py

132 lines
3.8 KiB

from abc import ABC, abstractmethod
from pathlib import Path
from typing import Union, List
from colossalai.core import global_context as gpc
# copied from high version pytorch to support low version
def _format_time(time_us):
"""Defines how to format time in FunctionEvent"""
US_IN_SECOND = 1000.0 * 1000.0
US_IN_MS = 1000.0
if time_us >= US_IN_SECOND:
return '{:.3f}s'.format(time_us / US_IN_SECOND)
if time_us >= US_IN_MS:
return '{:.3f}ms'.format(time_us / US_IN_MS)
return '{:.3f}us'.format(time_us)
# copied from high version pytorch to support low version
def _format_memory(nbytes):
"""Returns a formatted memory size string"""
KB = 1024
MB = 1024 * KB
GB = 1024 * MB
if (abs(nbytes) >= GB):
return '{:.2f} GB'.format(nbytes * 1.0 / GB)
elif (abs(nbytes) >= MB):
return '{:.2f} MB'.format(nbytes * 1.0 / MB)
elif (abs(nbytes) >= KB):
return '{:.2f} KB'.format(nbytes * 1.0 / KB)
else:
return str(nbytes) + ' B'
def _format_bandwidth(volume: float or int, time_us: int):
sec_div_mb = (1000.0 / 1024.0)**2
mb_per_sec = volume / time_us * sec_div_mb
if mb_per_sec >= 1024.0:
return '{:.3f} GB/s'.format(mb_per_sec / 1024.0)
else:
return '{:.3f} MB/s'.format(mb_per_sec)
class BaseProfiler(ABC):
def __init__(self, profiler_name: str, priority: int):
self.name = profiler_name
self.priority = priority
@abstractmethod
def enable(self):
pass
@abstractmethod
def disable(self):
pass
@abstractmethod
def to_tensorboard(self, writer):
pass
@abstractmethod
def to_file(self, filename: Path):
pass
@abstractmethod
def show(self):
pass
class ProfilerContext(object):
"""Profiler context manager
Usage::
world_size = 4
inputs = torch.randn(10, 10, dtype=torch.float32, device=get_current_device())
outputs = torch.empty(world_size, 10, 10, dtype=torch.float32, device=get_current_device())
outputs_list = list(torch.chunk(outputs, chunks=world_size, dim=0))
cc_prof = CommProfiler()
with ProfilerContext([cc_prof]) as prof:
op = dist.all_reduce(inputs, async_op=True)
dist.all_gather(outputs_list, inputs)
op.wait()
dist.reduce_scatter(inputs, outputs_list)
dist.broadcast(inputs, 0)
dist.reduce(inputs, 0)
prof.show()
"""
def __init__(self, profilers: List[BaseProfiler] = None, enable: bool = True):
self.enable = enable
self.profilers = sorted(profilers, key=lambda prof: prof.priority)
def __enter__(self):
if self.enable:
for prof in self.profilers:
prof.enable()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if self.enable:
for prof in self.profilers:
prof.disable()
def to_tensorboard(self, writer):
from torch.utils.tensorboard import SummaryWriter
assert isinstance(writer, SummaryWriter), \
f'torch.utils.tensorboard.SummaryWriter is required, but found {type(writer)}.'
for prof in self.profilers:
prof.to_tensorboard(writer)
def to_file(self, log_dir: Union[str, Path]):
if isinstance(log_dir, str):
log_dir = Path(log_dir)
if not log_dir.exists():
log_dir.mkdir(parents=True, exist_ok=True)
for prof in self.profilers:
log_file = log_dir.joinpath(f'{prof.name}_rank_{gpc.get_global_rank()}.log')
prof.to_file(log_file)
def show(self):
for prof in self.profilers:
prof.show()