ColossalAI/colossalai/context/process_group_initializer/initializer_3d.py

217 lines
8.5 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
2021-10-28 16:21:23 +00:00
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
def _check_depth_env_var(depth):
# check global variable
env_depth = env.depth_3d
2021-10-28 16:21:23 +00:00
if env_depth:
assert int(env_depth) == depth, \
Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
'DEPTH_3D has been set in the current environment and ' \
2021-10-28 16:21:23 +00:00
'does not match with the value passed to this initialized'
else:
env.depth_3d = depth
2021-10-28 16:21:23 +00:00
class Initializer_3D_Input(ProcessGroupInitializer):
2022-01-21 02:44:30 +00:00
"""3D tensor parallel initialization among input.
2022-03-25 05:02:39 +00:00
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
2022-01-21 02:44:30 +00:00
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
2021-10-28 16:21:23 +00:00
2022-03-25 05:02:39 +00:00
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among input in a tuple.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
2021-10-28 16:21:23 +00:00
group_world_size = None
mode = ParallelMode.PARALLEL_3D_INPUT
env.input_group_3d = mode
2021-10-28 16:21:23 +00:00
for h in range(self.num_group):
for i in range(self.depth):
for k in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
2021-10-28 16:21:23 +00:00
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
2021-10-28 16:21:23 +00:00
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
2021-10-28 16:21:23 +00:00
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
2021-10-28 16:21:23 +00:00
class Initializer_3D_Weight(ProcessGroupInitializer):
2022-01-21 02:44:30 +00:00
"""3D tensor parallel initialization among weight.
2022-03-25 05:02:39 +00:00
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
2022-01-21 02:44:30 +00:00
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
2021-10-28 16:21:23 +00:00
2022-03-25 05:02:39 +00:00
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among weight in a tuple.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
2021-10-28 16:21:23 +00:00
group_world_size = None
mode = ParallelMode.PARALLEL_3D_WEIGHT
env.weight_group_3d = mode
2021-10-28 16:21:23 +00:00
for h in range(self.num_group):
for k in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
2021-10-28 16:21:23 +00:00
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
2021-10-28 16:21:23 +00:00
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
2021-10-28 16:21:23 +00:00
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
2021-10-28 16:21:23 +00:00
class Initializer_3D_Output(ProcessGroupInitializer):
"""3D tensor parallel initialization among output.
2022-01-21 02:44:30 +00:00
2022-03-25 05:02:39 +00:00
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
2022-01-21 02:44:30 +00:00
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
2021-10-28 16:21:23 +00:00
2022-03-25 05:02:39 +00:00
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among output in a tuple.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
2021-10-28 16:21:23 +00:00
group_world_size = None
mode = ParallelMode.PARALLEL_3D_OUTPUT
env.output_group_3d = mode
2021-10-28 16:21:23 +00:00
for h in range(self.num_group):
for i in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
2021-10-28 16:21:23 +00:00
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
2021-10-28 16:21:23 +00:00
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
2021-10-28 16:21:23 +00:00
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
2021-10-28 16:21:23 +00:00
@DIST_GROUP_INITIALIZER.register_module
class Initializer_3D(ProcessGroupInitializer):
2022-01-21 02:44:30 +00:00
"""Serve as the single entry point to 3D parallel initialization.
2022-03-25 05:02:39 +00:00
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
2022-01-21 02:44:30 +00:00
"""
2021-10-28 16:21:23 +00:00
def __init__(self, *args):
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
assert self.tensor_parallel_size == self.depth ** 3, \
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
_check_depth_env_var(self.depth)
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
2021-10-28 16:21:23 +00:00
def init_dist_group(self):
2022-01-21 02:44:30 +00:00
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
2022-03-25 05:02:39 +00:00
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
Whole 3D tensor parallelism's information in a list of tuples.
2022-01-21 02:44:30 +00:00
"""
parallel_setting = [
self.input_initializer.init_dist_group(),
self.weight_initializer.init_dist_group(),
self.output_initializer.init_dist_group()
]
2021-10-28 16:21:23 +00:00
return parallel_setting