2023-03-17 05:49:04 +00:00
|
|
|
import random
|
2023-06-05 06:20:47 +00:00
|
|
|
from copy import deepcopy
|
2023-03-17 05:49:04 +00:00
|
|
|
from typing import Any, Callable, Optional, Tuple
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
2023-05-15 09:20:56 +00:00
|
|
|
from packaging import version
|
2023-03-17 05:49:04 +00:00
|
|
|
|
2023-06-26 07:50:07 +00:00
|
|
|
from colossalai.device.device_mesh import DeviceMesh
|
2023-06-05 06:20:47 +00:00
|
|
|
from colossalai.lazy.lazy_init import LazyInitContext, LazyTensor, _MyTensor
|
2023-06-22 03:42:11 +00:00
|
|
|
from colossalai.tensor.d_tensor import to_global
|
|
|
|
from colossalai.tensor.d_tensor.layout import Layout
|
2023-03-17 05:49:04 +00:00
|
|
|
from tests.kit.model_zoo.registry import ModelAttribute
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
SUPPORT_LAZY = version.parse(torch.__version__) >= version.parse("1.12.0")
|
2023-05-15 09:20:56 +00:00
|
|
|
|
2023-03-17 05:49:04 +00:00
|
|
|
# model_fn, data_gen_fn, output_transform_fn, model_attr
|
|
|
|
TestingEntry = Tuple[Callable[[], torch.nn.Module], Callable[[], dict], Callable[[], dict], Optional[ModelAttribute]]
|
|
|
|
|
|
|
|
|
|
|
|
def set_seed(seed: int) -> None:
|
|
|
|
random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
|
|
|
|
|
|
|
2023-05-10 09:12:03 +00:00
|
|
|
def assert_model_equal(m1: torch.nn.Module, m2: torch.nn.Module) -> None:
|
2023-03-17 05:49:04 +00:00
|
|
|
s1 = m1.state_dict()
|
|
|
|
s2 = m2.state_dict()
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
assert len(s1) == len(s2), f"len {len(s1)} vs {len(s2)}"
|
2023-03-17 05:49:04 +00:00
|
|
|
|
|
|
|
for (n1, t1), (n2, t2) in zip(s1.items(), s2.items()):
|
|
|
|
assert n1 == n2
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.equal(t1, t2), f"{n1} {t1} vs {t2}"
|
2023-03-17 05:49:04 +00:00
|
|
|
|
2023-06-05 06:20:47 +00:00
|
|
|
for p1, p2 in zip(m1.parameters(), m2.parameters()):
|
|
|
|
assert p1.requires_grad == p2.requires_grad
|
|
|
|
|
2023-03-17 05:49:04 +00:00
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def assert_forward_equal(
|
|
|
|
m1: torch.nn.Module,
|
|
|
|
m2: torch.nn.Module,
|
|
|
|
data_gen_fn: Callable[[], dict],
|
|
|
|
output_transform_fn: Callable[[Any], dict],
|
|
|
|
) -> None:
|
2023-03-17 05:49:04 +00:00
|
|
|
data = data_gen_fn()
|
|
|
|
|
|
|
|
m1.eval()
|
|
|
|
m2.eval()
|
|
|
|
# run forward
|
|
|
|
with torch.no_grad():
|
|
|
|
outputs1 = m1(**data)
|
|
|
|
outputs2 = m2(**data)
|
|
|
|
|
|
|
|
# compare output
|
|
|
|
transformed_out1 = output_transform_fn(outputs1)
|
|
|
|
transformed_out2 = output_transform_fn(outputs2)
|
|
|
|
|
|
|
|
assert len(transformed_out1) == len(transformed_out2)
|
|
|
|
|
|
|
|
for key, out1 in transformed_out1.items():
|
|
|
|
out2 = transformed_out2[key]
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.allclose(
|
|
|
|
out1, out2, atol=1e-5
|
|
|
|
), f"{m1.__class__.__name__} has inconsistent outputs, {out1} vs {out2}"
|
2023-03-17 05:49:04 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def check_lazy_init(
|
|
|
|
entry: TestingEntry, seed: int = 42, verbose: bool = False, check_forward: bool = False, default_device: str = "cpu"
|
|
|
|
) -> None:
|
2023-06-21 01:32:46 +00:00
|
|
|
model_fn, data_gen_fn, output_transform_fn, _, model_attr = entry
|
2023-03-17 05:49:04 +00:00
|
|
|
_MyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
|
|
|
LazyTensor._pre_op_fn = lambda *args: set_seed(seed)
|
2023-07-19 08:43:01 +00:00
|
|
|
ctx = LazyInitContext(tensor_cls=_MyTensor, default_device=default_device)
|
2023-03-17 05:49:04 +00:00
|
|
|
with ctx:
|
|
|
|
model = model_fn()
|
2023-07-19 08:43:01 +00:00
|
|
|
ctx = LazyInitContext(default_device=default_device)
|
2023-03-17 05:49:04 +00:00
|
|
|
with ctx:
|
|
|
|
deferred_model = model_fn()
|
2023-06-05 06:20:47 +00:00
|
|
|
copied_deferred_model = deepcopy(deferred_model)
|
2023-03-17 05:49:04 +00:00
|
|
|
deferred_model = ctx.materialize(deferred_model, verbose=verbose)
|
2023-06-05 06:20:47 +00:00
|
|
|
copied_deferred_model = ctx.materialize(copied_deferred_model, verbose=verbose)
|
2023-05-10 09:12:03 +00:00
|
|
|
assert_model_equal(model, deferred_model)
|
2023-06-05 06:20:47 +00:00
|
|
|
assert_model_equal(deferred_model, copied_deferred_model)
|
2023-03-17 05:49:04 +00:00
|
|
|
if check_forward:
|
|
|
|
assert_forward_equal(model, deferred_model, data_gen_fn, output_transform_fn)
|
2023-06-05 06:20:47 +00:00
|
|
|
assert_forward_equal(deferred_model, copied_deferred_model, data_gen_fn, output_transform_fn)
|
2023-03-17 05:49:04 +00:00
|
|
|
if verbose:
|
2023-09-19 06:20:26 +00:00
|
|
|
print(f"{model.__class__.__name__} pass")
|
2023-03-23 02:53:06 +00:00
|
|
|
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
def assert_dist_model_equal(
|
|
|
|
model: torch.nn.Module, distributed_model: torch.nn.Module, device_mesh: DeviceMesh, sharding_spec_dict: dict
|
|
|
|
) -> None:
|
2023-03-23 02:53:06 +00:00
|
|
|
state = model.state_dict()
|
|
|
|
distributed_state = distributed_model.state_dict()
|
|
|
|
|
2023-09-19 06:20:26 +00:00
|
|
|
assert len(state) == len(distributed_state), f"len {len(state)} vs {len(distributed_state)}"
|
2023-03-23 02:53:06 +00:00
|
|
|
|
|
|
|
for (n1, t1), (n2, t2) in zip(state.items(), distributed_state.items()):
|
|
|
|
assert n1 == n2
|
|
|
|
t1 = t1.cuda()
|
|
|
|
t2 = t2.cuda()
|
2023-06-22 03:42:11 +00:00
|
|
|
if n2 in sharding_spec_dict:
|
|
|
|
layout = Layout(device_mesh=device_mesh, sharding_spec=sharding_spec_dict[n2], global_shape=t1.shape)
|
|
|
|
t2.dist_layout = layout
|
|
|
|
t2 = to_global(t2)
|
2023-09-19 06:20:26 +00:00
|
|
|
assert torch.equal(t1, t2), f"{n1} {t1} vs {t2}"
|