ColossalAI/examples/community/roberta/preprocessing/get_mask.py

261 lines
9.4 KiB
Python
Raw Normal View History

import collections
import logging
import os
import random
import time
from enum import IntEnum
from random import choice
import jieba
import torch
jieba.setLogLevel(logging.CRITICAL)
import re
import mask
import numpy as np
PAD = 0
MaskedLMInstance = collections.namedtuple("MaskedLMInstance", ["index", "label"])
def map_to_numpy(data):
return np.asarray(data)
class PreTrainingDataset():
def __init__(self,
tokenizer,
max_seq_length,
backend='python',
max_predictions_per_seq: int = 80,
do_whole_word_mask: bool = True):
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
self.masked_lm_prob = 0.15
self.backend = backend
self.do_whole_word_mask = do_whole_word_mask
self.max_predictions_per_seq = max_predictions_per_seq
self.vocab_words = list(tokenizer.vocab.keys())
self.rec = re.compile('[\u4E00-\u9FA5]')
self.whole_rec = re.compile('##[\u4E00-\u9FA5]')
self.mlm_p = 0.15
self.mlm_mask_p = 0.8
self.mlm_tamper_p = 0.05
self.mlm_maintain_p = 0.1
def tokenize(self, doc):
temp = []
for d in doc:
temp.append(self.tokenizer.tokenize(d))
return temp
def create_training_instance(self, instance):
is_next = 1
raw_text_list = self.get_new_segment(instance)
tokens_a = raw_text_list
assert len(tokens_a) == len(instance)
# tokens_a, tokens_b, is_next = instance.get_values()
# print(f'is_next label:{is_next}')
# Create mapper
tokens = []
original_tokens = []
segment_ids = []
tokens.append("[CLS]")
original_tokens.append('[CLS]')
segment_ids.append(0)
for index, token in enumerate(tokens_a):
tokens.append(token)
original_tokens.append(instance[index])
segment_ids.append(0)
tokens.append("[SEP]")
original_tokens.append('[SEP]')
segment_ids.append(0)
# for token in tokens_b:
# tokens.append(token)
# segment_ids.append(1)
# tokens.append("[SEP]")
# segment_ids.append(1)
# Get Masked LM predictions
if self.backend == 'c++':
output_tokens, masked_lm_output = mask.create_whole_masked_lm_predictions(
tokens, original_tokens, self.vocab_words, self.tokenizer.vocab, self.max_predictions_per_seq,
self.masked_lm_prob)
elif self.backend == 'python':
output_tokens, masked_lm_output = self.create_whole_masked_lm_predictions(tokens)
# Convert to Ids
input_ids = self.tokenizer.convert_tokens_to_ids(output_tokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < self.max_seq_length:
input_ids.append(PAD)
segment_ids.append(PAD)
input_mask.append(PAD)
masked_lm_output.append(-1)
return ([
map_to_numpy(input_ids),
map_to_numpy(input_mask),
map_to_numpy(segment_ids),
map_to_numpy(masked_lm_output),
map_to_numpy([is_next])
])
def create_masked_lm_predictions(self, tokens):
cand_indexes = []
for i, token in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
# cand_indexes.append(i)
random.shuffle(cand_indexes)
output_tokens = list(tokens)
num_to_predict = min(self.max_predictions_per_seq, max(1, int(round(len(tokens) * self.masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
if index in covered_indexes:
continue
covered_indexes.add(index)
masked_token = None
# 80% mask
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% Keep Original
if random.random() < 0.5:
masked_token = tokens[index]
# 10% replace w/ random word
else:
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(MaskedLMInstance(index=index, label=tokens[index]))
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_output = [-1] * len(output_tokens)
for p in masked_lms:
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
return (output_tokens, masked_lm_output)
def get_new_segment(self, segment):
"""
Input a sentence, return a processed sentence: In order to support the Chinese whole word mask, the words that are separated will be marked with a special mark ("#"), so that the subsequent processing module can know which words belong to the same word.
:param segment: a sentence
"""
seq_cws = jieba.lcut(''.join(segment))
seq_cws_dict = {x: 1 for x in seq_cws}
new_segment = []
i = 0
while i < len(segment):
if len(self.rec.findall(segment[i])) == 0:
new_segment.append(segment[i])
i += 1
continue
has_add = False
for length in range(3, 0, -1):
if i + length > len(segment):
continue
if ''.join(segment[i:i + length]) in seq_cws_dict:
new_segment.append(segment[i])
for l in range(1, length):
new_segment.append('##' + segment[i + l])
i += length
has_add = True
break
if not has_add:
new_segment.append(segment[i])
i += 1
return new_segment
def create_whole_masked_lm_predictions(self, tokens):
"""Creates the predictions for the masked LM objective."""
cand_indexes = []
for (i, token) in enumerate(tokens):
if token == "[CLS]" or token == "[SEP]":
continue
# Whole Word Masking means that if we mask all of the wordpieces
# corresponding to an original word. When a word has been split into
# WordPieces, the first token does not have any marker and any subsequence
# tokens are prefixed with ##. So whenever we see the ## token, we
# append it to the previous set of word indexes.
#
# Note that Whole Word Masking does *not* change the training code
# at all -- we still predict each WordPiece independently, softmaxed
# over the entire vocabulary.
if (self.do_whole_word_mask and len(cand_indexes) >= 1 and token.startswith("##")):
cand_indexes[-1].append(i)
else:
cand_indexes.append([i])
random.shuffle(cand_indexes)
output_tokens = [t[2:] if len(self.whole_rec.findall(t)) > 0 else t for t in tokens] # 去掉"##"
num_to_predict = min(self.max_predictions_per_seq, max(1, int(round(len(tokens) * self.masked_lm_prob))))
masked_lms = []
covered_indexes = set()
for index_set in cand_indexes:
if len(masked_lms) >= num_to_predict:
break
# If adding a whole-word mask would exceed the maximum number of
# predictions, then just skip this candidate.
if len(masked_lms) + len(index_set) > num_to_predict:
continue
is_any_index_covered = False
for index in index_set:
if index in covered_indexes:
is_any_index_covered = True
break
if is_any_index_covered:
continue
for index in index_set:
covered_indexes.add(index)
masked_token = None
# 80% of the time, replace with [MASK]
if random.random() < 0.8:
masked_token = "[MASK]"
else:
# 10% of the time, keep original
if random.random() < 0.5:
masked_token = tokens[index][2:] if len(self.whole_rec.findall(
tokens[index])) > 0 else tokens[index] # 去掉"##"
# 10% of the time, replace with random word
else:
masked_token = self.vocab_words[random.randint(0, len(self.vocab_words) - 1)]
output_tokens[index] = masked_token
masked_lms.append(
MaskedLMInstance(
index=index,
label=tokens[index][2:] if len(self.whole_rec.findall(tokens[index])) > 0 else tokens[index]))
assert len(masked_lms) <= num_to_predict
masked_lms = sorted(masked_lms, key=lambda x: x.index)
masked_lm_output = [-1] * len(output_tokens)
for p in masked_lms:
masked_lm_output[p.index] = self.tokenizer.vocab[p.label]
return (output_tokens, masked_lm_output)