ColossalAI/colossalai/utils/profiler/comm_profiler.py

303 lines
10 KiB
Python
Raw Normal View History

import inspect
import torch
from torch.autograd.profiler import profile
import torch.distributed as dist
from torch.distributed import ReduceOp
from colossalai.utils import get_current_device
from typing import List, Optional
def _get_code_location(depth: int):
ret = ""
length = len(inspect.stack())
for i in range(3, min(length, depth + 1)):
upper_frame = inspect.stack()[i]
function_name = inspect.stack()[i - 1].function
info = upper_frame.filename + "(" + str(upper_frame.lineno) + "): " + function_name + "\n"
ret += info
return ret
# copied from high version pytorch to support low version
def _format_time(time_us):
"""Defines how to format time in FunctionEvent"""
US_IN_SECOND = 1000.0 * 1000.0
US_IN_MS = 1000.0
if time_us >= US_IN_SECOND:
return '{:.3f}s'.format(time_us / US_IN_SECOND)
if time_us >= US_IN_MS:
return '{:.3f}ms'.format(time_us / US_IN_MS)
return '{:.3f}us'.format(time_us)
# copied from high version pytorch to support low version
def _format_memory(nbytes):
"""Returns a formatted memory size string"""
KB = 1024
MB = 1024 * KB
GB = 1024 * MB
if (abs(nbytes) >= GB):
return '{:.2f} Gb'.format(nbytes * 1.0 / GB)
elif (abs(nbytes) >= MB):
return '{:.2f} Mb'.format(nbytes * 1.0 / MB)
elif (abs(nbytes) >= KB):
return '{:.2f} Kb'.format(nbytes * 1.0 / KB)
else:
return str(nbytes) + ' b'
def _format_bandwith(volme: float, time_us: int):
sec_div_mb = (1000.0 / 1024.0)**2
mb_per_sec = volme / time_us * sec_div_mb
if mb_per_sec >= 1024.0:
return '{:.3f} Gb/s'.format(mb_per_sec / 1024.0)
else:
return '{:.3f} Mb/s'.format(mb_per_sec)
class CommEvent(object):
"""Communication Event. Used for communication time and communication
volume recording.
"""
def __init__(self, count: int = 0, comm_vol: float = 0., cuda_time: int = 0):
self.self_count = count
self.self_comm_vol = comm_vol
self.self_cuda_time = cuda_time
def add(self, rhs):
self.self_count += rhs.self_count
self.self_comm_vol += rhs.self_comm_vol
self.self_cuda_time += rhs.self_cuda_time
class CommProfiler(object):
"""Communication profiler. Records all communication events.
"""
def __init__(self, total_count: int = 0, total_comm_vol: float = 0, total_cuda_time: int = 0, prof_depth: int = 3):
super().__init__()
self.total_count = total_count
self.total_comm_vol = total_comm_vol
self.total_cuda_time = total_cuda_time
self.depth = prof_depth
self.ops_record = dict()
self.profiler = None
self.pending_op = None
self.pending_metadata = None
self.warn_flag = False
def reset(self):
self.total_count = 0
self.total_comm_vol = 0
self.total_cuda_time = 0
self.ops_record = dict()
self.profiler = None
self.pending_op = None
self.pending_metadata = None
self.warn_flag = False
def show(self):
if self.warn_flag:
print("Warnning: there exists multiple communication operations in the same time.\n"
"As a result, the profiling result is not accurate.")
print("Collective communication profiling result:",
"total cuda time: {}".format(_format_time(self.total_cuda_time)),
"average bandwith: {}".format(_format_bandwith(self.total_comm_vol, self.total_cuda_time)),
"total number of calls: {}".format(self.total_count),
"All events:",
sep='\n')
show_list = sorted(self.ops_record.items(), key=lambda kv: -kv[1].self_cuda_time)
for location, event in show_list:
print(location,
"self cuda time: {}".format(_format_time(event.self_cuda_time)),
"{:.1f}% of total communication time".format(event.self_cuda_time / self.total_cuda_time * 100.0),
"self communication volme: {}".format(_format_memory(event.self_comm_vol)),
"average bandwith: {}".format(_format_bandwith(event.self_comm_vol, event.self_cuda_time)),
"number of calls: {}".format(event.self_count),
"--------------------",
sep='\n')
@property
def has_aync_op(self):
return self.pending_op is not None
def activate_profiler(self, kn: str, vol: float):
self.pending_metadata = (kn, _get_code_location(self.depth), vol)
self.profiler = profile(enabled=True, use_cuda=True, use_cpu=True, use_kineto=True)
self.profiler.__enter__()
def close_profiler(self, group=None):
assert self.profiler is not None, "There is no running dist op"
kernel_name, code_location, vol = self.pending_metadata
self.profiler.__exit__(None, None, None)
if self.profiler.enabled:
assert_flag = 0
current_comm_event = None
events = self.profiler.function_events
for event in events:
if kernel_name in event.name:
assert assert_flag == 0, "Multiple dist ops has been called "
current_comm_event = CommEvent(1, vol, event.self_cuda_time_total)
assert_flag += 1
assert current_comm_event is not None, "dist op has not been found"
buffer = torch.tensor([current_comm_event.self_cuda_time], device=get_current_device())
torch_all_reduce(buffer, op=ReduceOp.MIN, group=group)
current_comm_event.self_cuda_time = buffer.item()
self.total_count += current_comm_event.self_count
self.total_comm_vol += current_comm_event.self_comm_vol
self.total_cuda_time += current_comm_event.self_cuda_time
if code_location in self.ops_record:
self.ops_record[code_location].add(current_comm_event)
else:
self.ops_record[code_location] = current_comm_event
self.profiler = None
self.pending_op = None
self.pending_metadata = None
def wait_async_op(self):
if self.pending_op is not None:
op = self.pending_op
op.wait()
self.close_profiler()
class CommHandler(object):
"""Communication handler. A dummy handler to wait aync operations.
"""
def __init__(self):
super().__init__()
self.prof = COL_COMM_PROF
def wait(self):
self.prof.wait_async_op()
COL_COMM_PROF = CommProfiler()
torch_all_reduce = dist.all_reduce
torch_all_gather = dist.all_gather
torch_reduce_scatter = dist.reduce_scatter
torch_broadcast = dist.broadcast
torch_reduce = dist.reduce
def enable_communication_prof(depth: int = 0):
COL_COMM_PROF.depth = 3 + depth
dist.all_reduce = all_reduce
dist.all_gather = all_gather
dist.reduce_scatter = reduce_scatter
dist.broadcast = broadcast
dist.reduce = reduce
def communication_prof_show():
COL_COMM_PROF.show()
def async_check():
if COL_COMM_PROF.pending_op is not None:
COL_COMM_PROF.warn_flag = True
COL_COMM_PROF.wait_async_op()
def all_reduce(tensor: torch.Tensor,
op: ReduceOp = ReduceOp.SUM,
group=None,
async_op: bool = False) -> Optional[CommHandler]:
async_check()
comm_size = dist.get_world_size(group)
correction = 2 * (comm_size - 1) / comm_size
comm_vol = correction * tensor.element_size() * tensor.numel()
COL_COMM_PROF.activate_profiler("ncclKernel_AllReduce_", comm_vol)
COL_COMM_PROF.pending_op = torch_all_reduce(tensor, op, group, async_op)
if async_op:
return CommHandler()
COL_COMM_PROF.close_profiler(group)
def reduce_scatter(output: torch.Tensor,
input_list: List[torch.Tensor],
op: ReduceOp = ReduceOp.SUM,
group=None,
async_op: bool = False) -> Optional[CommHandler]:
async_check()
comm_size = dist.get_world_size(group)
correction = (comm_size - 1) / comm_size
comm_vol = 0
for tensor in input_list:
comm_vol += tensor.element_size() * tensor.numel()
comm_vol *= correction
COL_COMM_PROF.activate_profiler("ncclKernel_ReduceScatter_", comm_vol)
COL_COMM_PROF.pending_op = torch_reduce_scatter(output, input_list, op, group, async_op)
if async_op:
return CommHandler()
COL_COMM_PROF.close_profiler(group)
def all_gather(tensor_list: List[torch.Tensor],
tensor: torch.Tensor,
group=None,
async_op: bool = False) -> Optional[CommHandler]:
async_check()
comm_size = dist.get_world_size(group)
correction = (comm_size - 1) / comm_size
comm_vol = 0
for ten in tensor_list:
comm_vol += ten.element_size() * ten.numel()
comm_vol *= correction
COL_COMM_PROF.activate_profiler("ncclKernel_AllGather_", comm_vol)
COL_COMM_PROF.pending_op = torch_all_gather(tensor_list, tensor, group, async_op)
if async_op:
return CommHandler()
COL_COMM_PROF.close_profiler(group)
def broadcast(tensor: torch.Tensor, src: int, group=None, async_op: bool = False) -> Optional[CommHandler]:
async_check()
comm_vol = 1.0 * tensor.element_size() * tensor.numel()
COL_COMM_PROF.activate_profiler("ncclKernel_Broadcast_", comm_vol)
COL_COMM_PROF.pending_op = torch_broadcast(tensor, src, group, async_op)
if async_op:
return CommHandler()
COL_COMM_PROF.close_profiler(group)
def reduce(tensor: torch.Tensor,
dst: int,
op: ReduceOp = ReduceOp.SUM,
group=None,
async_op: bool = False) -> Optional[CommHandler]:
async_check()
comm_vol = 1.0 * tensor.element_size() * tensor.numel()
COL_COMM_PROF.activate_profiler("ncclKernel_Reduce_", comm_vol)
COL_COMM_PROF.pending_op = torch_reduce(tensor, dst, op, group, async_op)
if async_op:
return CommHandler()
COL_COMM_PROF.close_profiler(group)