mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
305 lines
13 KiB
305 lines
13 KiB
1 year ago
|
#include "cpu_adam_arm.h"
|
||
|
|
||
|
void AdamOptimizer::Step_1(void *_params, void *grads, void *_exp_avg,
|
||
|
void *_exp_avg_sq, size_t _param_size,
|
||
|
at::ScalarType param_dtype,
|
||
|
at::ScalarType grad_dtype,
|
||
|
at::ScalarType exp_avg_dtype,
|
||
|
at::ScalarType exp_avg_sq_dtype, float loss_scale) {
|
||
|
size_t rounded_size = 0;
|
||
|
#if defined(__aarch64__)
|
||
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH);
|
||
|
#endif
|
||
|
|
||
|
float betta1_minus1 = 1 - _betta1;
|
||
|
float betta2_minus1 = 1 - _betta2;
|
||
|
float step_size = -1 * _alpha / _bias_correction1;
|
||
|
float w_decay = -1 * _alpha * _weight_decay;
|
||
|
|
||
|
#if defined(__aarch64__)
|
||
|
float32x4_t betta1_4 = simd_set(_betta1);
|
||
|
float32x4_t betta2_4 = simd_set(_betta2);
|
||
|
float32x4_t betta1_minus1_4 = simd_set(betta1_minus1);
|
||
|
float32x4_t betta2_minus1_4 = simd_set(betta2_minus1);
|
||
|
float32x4_t bias2_sqrt = simd_set(_bias_correction2);
|
||
|
float32x4_t eps_4 = simd_set(_eps);
|
||
|
float32x4_t step_size_4 = simd_set(step_size);
|
||
|
float32x4_t weight_decay_4;
|
||
|
if (_weight_decay > 0) {
|
||
|
weight_decay_4 = _adamw_mode ? simd_set(w_decay) : simd_set(_weight_decay);
|
||
|
}
|
||
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||
|
size_t copy_size = TILE;
|
||
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||
|
size_t offset = copy_size + t;
|
||
|
|
||
|
#pragma omp parallel for
|
||
|
for (size_t i = t; i < offset; i += SIMD_WIDTH) {
|
||
|
float32x4_t grad_4 = simd_load_offset(grads, grad_dtype, i);
|
||
|
if (loss_scale > 0) {
|
||
|
float32x4_t loss_scale_vec = simd_set(loss_scale);
|
||
|
grad_4 = vdivq_f32(grad_4, loss_scale_vec);
|
||
|
}
|
||
|
float32x4_t momentum_4 = simd_load_offset(_exp_avg, exp_avg_dtype, i);
|
||
|
float32x4_t variance_4 =
|
||
|
simd_load_offset(_exp_avg_sq, exp_avg_sq_dtype, i);
|
||
|
float32x4_t param_4 = simd_load_offset(_params, param_dtype, i);
|
||
|
if (_weight_decay > 0 && !_adamw_mode) {
|
||
|
grad_4 = vfmaq_f32(grad_4, param_4, weight_decay_4);
|
||
|
}
|
||
|
momentum_4 = vmulq_f32(momentum_4, betta1_4);
|
||
|
momentum_4 = vfmaq_f32(momentum_4, grad_4, betta1_minus1_4);
|
||
|
variance_4 = vmulq_f32(variance_4, betta2_4);
|
||
|
grad_4 = vmulq_f32(grad_4, grad_4);
|
||
|
variance_4 = vfmaq_f32(variance_4, grad_4, betta2_minus1_4);
|
||
|
grad_4 = vsqrtq_f32(variance_4);
|
||
|
grad_4 = vfmaq_f32(eps_4, grad_4, bias2_sqrt);
|
||
|
grad_4 = vdivq_f32(momentum_4, grad_4);
|
||
|
if (_weight_decay > 0 && _adamw_mode) {
|
||
|
param_4 = vfmaq_f32(param_4, param_4, weight_decay_4);
|
||
|
}
|
||
|
param_4 = vfmaq_f32(param_4, grad_4, step_size_4);
|
||
|
simd_store_offset(_params, param_dtype, param_4, i);
|
||
|
simd_store_offset(_exp_avg, exp_avg_dtype, momentum_4, i);
|
||
|
simd_store_offset(_exp_avg_sq, exp_avg_sq_dtype, variance_4, i);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
if (_param_size > rounded_size) {
|
||
|
for (size_t t = rounded_size; t < _param_size; t += TILE) {
|
||
|
size_t copy_size = TILE;
|
||
|
if ((t + TILE) > _param_size) copy_size = _param_size - t;
|
||
|
size_t offset = copy_size + t;
|
||
|
|
||
|
#pragma omp parallel for
|
||
|
for (size_t k = t; k < offset; k++) {
|
||
|
float grad = scalar_load_offset(grads, grad_dtype, k);
|
||
|
if (loss_scale > 0) {
|
||
|
grad /= loss_scale;
|
||
|
}
|
||
|
float param = scalar_load_offset(_params, param_dtype, k);
|
||
|
float momentum = scalar_load_offset(_exp_avg, exp_avg_dtype, k);
|
||
|
float variance = scalar_load_offset(_exp_avg_sq, exp_avg_sq_dtype, k);
|
||
|
if (_weight_decay > 0 && !_adamw_mode) {
|
||
|
grad = param * _weight_decay + grad;
|
||
|
}
|
||
|
momentum = momentum * _betta1;
|
||
|
momentum = grad * betta1_minus1 + momentum;
|
||
|
|
||
|
variance = variance * _betta2;
|
||
|
grad = grad * grad;
|
||
|
variance = grad * betta2_minus1 + variance;
|
||
|
|
||
|
grad = sqrt(variance);
|
||
|
grad = grad * _bias_correction2 + _eps;
|
||
|
grad = momentum / grad;
|
||
|
if (_weight_decay > 0 && _adamw_mode) {
|
||
|
param += w_decay * param;
|
||
|
}
|
||
|
param = grad * step_size + param;
|
||
|
|
||
|
scalar_store_offset(_params, param_dtype, param, k);
|
||
|
scalar_store_offset(_exp_avg, exp_avg_dtype, momentum, k);
|
||
|
scalar_store_offset(_exp_avg_sq, exp_avg_sq_dtype, variance, k);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AdamOptimizer::Step_4(void *_params, void *grads, void *_exp_avg,
|
||
|
void *_exp_avg_sq, size_t _param_size,
|
||
|
at::ScalarType param_dtype,
|
||
|
at::ScalarType grad_dtype,
|
||
|
at::ScalarType exp_avg_dtype,
|
||
|
at::ScalarType exp_avg_sq_dtype, float loss_scale) {
|
||
|
size_t rounded_size = 0;
|
||
|
#if defined(__aarch64__)
|
||
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 4);
|
||
|
#endif
|
||
|
|
||
|
float betta1_minus1 = 1 - _betta1;
|
||
|
float betta2_minus1 = 1 - _betta2;
|
||
|
float step_size = -1 * _alpha / _bias_correction1;
|
||
|
float w_decay = -1 * _alpha * _weight_decay;
|
||
|
|
||
|
#if defined(__aarch64__)
|
||
|
float32x4_t betta1_4 = simd_set(_betta1);
|
||
|
float32x4_t betta2_4 = simd_set(_betta2);
|
||
|
float32x4_t betta1_minus1_4 = simd_set(betta1_minus1);
|
||
|
float32x4_t betta2_minus1_4 = simd_set(betta2_minus1);
|
||
|
float32x4_t bias2_sqrt = simd_set(_bias_correction2);
|
||
|
float32x4_t eps_4 = simd_set(_eps);
|
||
|
float32x4_t step_size_4 = simd_set(step_size);
|
||
|
float32x4_t weight_decay_4;
|
||
|
if (_weight_decay > 0) {
|
||
|
weight_decay_4 = _adamw_mode ? simd_set(w_decay) : simd_set(_weight_decay);
|
||
|
}
|
||
|
|
||
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||
|
size_t copy_size = TILE;
|
||
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||
|
size_t offset = copy_size + t;
|
||
|
|
||
|
#pragma omp parallel for
|
||
|
for (size_t i = t; i < offset; i += SIMD_WIDTH * 4) {
|
||
|
float32x4_t grad_4[4];
|
||
|
float32x4_t momentum_4[4];
|
||
|
float32x4_t variance_4[4];
|
||
|
float32x4_t param_4[4];
|
||
|
#pragma unroll 4
|
||
|
for (int j = 0; j < 4; j++) {
|
||
|
grad_4[j] = simd_load_offset(grads, grad_dtype, i + SIMD_WIDTH * j);
|
||
|
if (loss_scale > 0) {
|
||
|
float32x4_t loss_scale_vec = simd_set(loss_scale);
|
||
|
grad_4[j] = vdivq_f32(grad_4[j], loss_scale_vec);
|
||
|
}
|
||
|
momentum_4[j] =
|
||
|
simd_load_offset(_exp_avg, exp_avg_dtype, i + SIMD_WIDTH * j);
|
||
|
variance_4[j] =
|
||
|
simd_load_offset(_exp_avg_sq, exp_avg_sq_dtype, i + SIMD_WIDTH * j);
|
||
|
param_4[j] = simd_load_offset(_params, param_dtype, i + SIMD_WIDTH * j);
|
||
|
if (_weight_decay > 0 && !_adamw_mode) {
|
||
|
grad_4[j] = vfmaq_f32(grad_4[j], param_4[j], weight_decay_4);
|
||
|
}
|
||
|
momentum_4[j] = vmulq_f32(momentum_4[j], betta1_4);
|
||
|
momentum_4[j] = vfmaq_f32(momentum_4[j], grad_4[j], betta1_minus1_4);
|
||
|
variance_4[j] = vmulq_f32(variance_4[j], betta2_4);
|
||
|
grad_4[j] = vmulq_f32(grad_4[j], grad_4[j]);
|
||
|
variance_4[j] = vfmaq_f32(variance_4[j], grad_4[j], betta2_minus1_4);
|
||
|
grad_4[j] = vsqrtq_f32(variance_4[j]);
|
||
|
grad_4[j] = vfmaq_f32(eps_4, grad_4[j], bias2_sqrt);
|
||
|
grad_4[j] = vdivq_f32(momentum_4[j], grad_4[j]);
|
||
|
if (_weight_decay > 0 && _adamw_mode) {
|
||
|
param_4[j] = vfmaq_f32(param_4[j], param_4[j], weight_decay_4);
|
||
|
}
|
||
|
param_4[j] = vfmaq_f32(param_4[j], grad_4[j], step_size_4);
|
||
|
simd_store_offset(_params, param_dtype, param_4[j], i + SIMD_WIDTH * j);
|
||
|
simd_store_offset(_exp_avg, exp_avg_dtype, momentum_4[j],
|
||
|
i + SIMD_WIDTH * j);
|
||
|
simd_store_offset(_exp_avg_sq, exp_avg_sq_dtype, variance_4[j],
|
||
|
i + SIMD_WIDTH * j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
if (_param_size > rounded_size) {
|
||
|
Step_1(scalar_seek_offset(_params, param_dtype, rounded_size),
|
||
|
scalar_seek_offset(grads, grad_dtype, rounded_size),
|
||
|
scalar_seek_offset(_exp_avg, exp_avg_dtype, rounded_size),
|
||
|
scalar_seek_offset(_exp_avg_sq, exp_avg_sq_dtype, rounded_size),
|
||
|
(_param_size - rounded_size), param_dtype, grad_dtype, exp_avg_dtype,
|
||
|
exp_avg_sq_dtype, loss_scale);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AdamOptimizer::Step_8(void *_params, void *grads, void *_exp_avg,
|
||
|
void *_exp_avg_sq, size_t _param_size,
|
||
|
at::ScalarType param_dtype,
|
||
|
at::ScalarType grad_dtype,
|
||
|
at::ScalarType exp_avg_dtype,
|
||
|
at::ScalarType exp_avg_sq_dtype, float loss_scale) {
|
||
|
size_t rounded_size = 0;
|
||
|
#if defined(__aarch64__)
|
||
|
rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * 8);
|
||
|
#endif
|
||
|
|
||
|
float betta1_minus1 = 1 - _betta1;
|
||
|
float betta2_minus1 = 1 - _betta2;
|
||
|
float step_size = -1 * _alpha / _bias_correction1;
|
||
|
float w_decay = -1 * _alpha * _weight_decay;
|
||
|
#if defined(__aarch64__)
|
||
|
float32x4_t betta1_4 = simd_set(_betta1);
|
||
|
float32x4_t betta2_4 = simd_set(_betta2);
|
||
|
float32x4_t betta1_minus1_4 = simd_set(betta1_minus1);
|
||
|
float32x4_t betta2_minus1_4 = simd_set(betta2_minus1);
|
||
|
float32x4_t bias2_sqrt = simd_set(_bias_correction2);
|
||
|
float32x4_t eps_4 = simd_set(_eps);
|
||
|
float32x4_t step_size_4 = simd_set(step_size);
|
||
|
float32x4_t weight_decay_4;
|
||
|
if (_weight_decay > 0) {
|
||
|
weight_decay_4 = _adamw_mode ? simd_set(w_decay) : simd_set(_weight_decay);
|
||
|
}
|
||
|
|
||
|
for (size_t t = 0; t < rounded_size; t += TILE) {
|
||
|
size_t copy_size = TILE;
|
||
|
if ((t + TILE) > rounded_size) copy_size = rounded_size - t;
|
||
|
size_t offset = copy_size + t;
|
||
|
|
||
|
#pragma omp parallel for
|
||
|
for (size_t i = t; i < offset; i += SIMD_WIDTH * 8) {
|
||
|
float32x4_t grad_4[8];
|
||
|
float32x4_t momentum_4[8];
|
||
|
float32x4_t variance_4[8];
|
||
|
float32x4_t param_4[8];
|
||
|
#pragma unroll 4
|
||
|
for (int j = 0; j < 8; j++) {
|
||
|
grad_4[j] = simd_load_offset(grads, grad_dtype, i + SIMD_WIDTH * j);
|
||
|
if (loss_scale > 0) {
|
||
|
float32x4_t loss_scale_vec = simd_set(loss_scale);
|
||
|
grad_4[j] = vdivq_f32(grad_4[j], loss_scale_vec);
|
||
|
}
|
||
|
momentum_4[j] =
|
||
|
simd_load_offset(_exp_avg, exp_avg_dtype, i + SIMD_WIDTH * j);
|
||
|
variance_4[j] =
|
||
|
simd_load_offset(_exp_avg_sq, exp_avg_sq_dtype, i + SIMD_WIDTH * j);
|
||
|
param_4[j] = simd_load_offset(_params, param_dtype, i + SIMD_WIDTH * j);
|
||
|
if (_weight_decay > 0 && !_adamw_mode) {
|
||
|
grad_4[j] = vfmaq_f32(grad_4[j], param_4[j], weight_decay_4);
|
||
|
}
|
||
|
momentum_4[j] = vmulq_f32(momentum_4[j], betta1_4);
|
||
|
momentum_4[j] = vfmaq_f32(momentum_4[j], grad_4[j], betta1_minus1_4);
|
||
|
variance_4[j] = vmulq_f32(variance_4[j], betta2_4);
|
||
|
grad_4[j] = vmulq_f32(grad_4[j], grad_4[j]);
|
||
|
variance_4[j] = vfmaq_f32(variance_4[j], grad_4[j], betta2_minus1_4);
|
||
|
grad_4[j] = vsqrtq_f32(variance_4[j]);
|
||
|
grad_4[j] = vfmaq_f32(eps_4, grad_4[j], bias2_sqrt);
|
||
|
grad_4[j] = vdivq_f32(momentum_4[j], grad_4[j]);
|
||
|
if (_weight_decay > 0 && _adamw_mode) {
|
||
|
param_4[j] = vfmaq_f32(param_4[j], param_4[j], weight_decay_4);
|
||
|
}
|
||
|
param_4[j] = vfmaq_f32(param_4[j], grad_4[j], step_size_4);
|
||
|
simd_store_offset(_params, param_dtype, param_4[j], i + SIMD_WIDTH * j);
|
||
|
simd_store_offset(_exp_avg, exp_avg_dtype, momentum_4[j],
|
||
|
i + SIMD_WIDTH * j);
|
||
|
simd_store_offset(_exp_avg_sq, exp_avg_sq_dtype, variance_4[j],
|
||
|
i + SIMD_WIDTH * j);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
if (_param_size > rounded_size) {
|
||
|
Step_4(scalar_seek_offset(_params, param_dtype, rounded_size),
|
||
|
scalar_seek_offset(grads, grad_dtype, rounded_size),
|
||
|
scalar_seek_offset(_exp_avg, exp_avg_dtype, rounded_size),
|
||
|
scalar_seek_offset(_exp_avg_sq, exp_avg_sq_dtype, rounded_size),
|
||
|
(_param_size - rounded_size), param_dtype, grad_dtype, exp_avg_dtype,
|
||
|
exp_avg_sq_dtype, loss_scale);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void AdamOptimizer::step(size_t step, float lr, float beta1, float beta2,
|
||
|
float epsilon, float weight_decay,
|
||
|
bool bias_correction, torch::Tensor ¶ms,
|
||
|
torch::Tensor &grads, torch::Tensor &exp_avg,
|
||
|
torch::Tensor &exp_avg_sq, float loss_scale) {
|
||
|
auto params_c = params.contiguous();
|
||
|
auto grads_c = grads.contiguous();
|
||
|
auto exp_avg_c = exp_avg.contiguous();
|
||
|
auto exp_avg_sq_c = exp_avg_sq.contiguous();
|
||
|
|
||
|
this->IncrementStep(step, beta1, beta2);
|
||
|
this->update_state(lr, epsilon, weight_decay, bias_correction);
|
||
|
this->Step_8(params_c.data_ptr(), grads_c.data_ptr(), exp_avg_c.data_ptr(),
|
||
|
exp_avg_sq_c.data_ptr(), params_c.numel(),
|
||
|
params_c.scalar_type(), grads_c.scalar_type(),
|
||
|
exp_avg_c.scalar_type(), exp_avg_sq_c.scalar_type(), loss_scale);
|
||
|
}
|
||
|
|
||
|
namespace py = pybind11;
|
||
|
|
||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||
|
py::class_<AdamOptimizer>(m, "CPUAdamOptimizer")
|
||
|
.def(py::init<float, float, float, float, float, bool>())
|
||
|
.def("step", &AdamOptimizer::step);
|
||
|
}
|