2023-03-15 02:42:07 +00:00
|
|
|
from collections import namedtuple
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torchvision
|
|
|
|
import torchvision.models as tm
|
|
|
|
from packaging import version
|
|
|
|
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
|
|
|
|
data_gen_fn = lambda: dict(x=torch.rand(4, 3, 224, 224))
|
|
|
|
output_transform_fn = lambda x: dict(output=x)
|
|
|
|
|
|
|
|
# special data gen fn
|
|
|
|
inception_v3_data_gen_fn = lambda: dict(x=torch.rand(4, 3, 299, 299))
|
|
|
|
|
|
|
|
|
|
|
|
# special model fn
|
|
|
|
def swin_s():
|
|
|
|
from torchvision.models.swin_transformer import Swin_T_Weights, _swin_transformer
|
|
|
|
|
|
|
|
# adapted from torchvision.models.swin_transformer.swin_small
|
|
|
|
weights = None
|
|
|
|
weights = Swin_T_Weights.verify(weights)
|
|
|
|
progress = True
|
|
|
|
|
|
|
|
return _swin_transformer(
|
|
|
|
patch_size=[4, 4],
|
|
|
|
embed_dim=96,
|
|
|
|
depths=[2, 2, 6, 2],
|
|
|
|
num_heads=[3, 6, 12, 24],
|
|
|
|
window_size=[7, 7],
|
|
|
|
stochastic_depth_prob=0, # it is originally 0.2, but we set it to 0 to make it deterministic
|
|
|
|
weights=weights,
|
|
|
|
progress=progress,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# special output transform fn
|
2023-04-26 06:37:25 +00:00
|
|
|
google_net_output_transform_fn = lambda x: dict(output=sum(x)) if isinstance(x, torchvision.models.GoogLeNetOutputs
|
|
|
|
) else dict(output=x)
|
2023-03-15 02:42:07 +00:00
|
|
|
swin_s_output_output_transform_fn = lambda x: {f'output{idx}': val
|
|
|
|
for idx, val in enumerate(x)} if isinstance(x, tuple) else dict(output=x)
|
2023-04-26 06:37:25 +00:00
|
|
|
inception_v3_output_transform_fn = lambda x: dict(output=sum(x)) if isinstance(x, torchvision.models.InceptionOutputs
|
|
|
|
) else dict(output=x)
|
2023-03-15 02:42:07 +00:00
|
|
|
|
|
|
|
model_zoo.register(name='torchvision_alexnet',
|
|
|
|
model_fn=tm.alexnet,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_densenet121',
|
|
|
|
model_fn=tm.densenet121,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_efficientnet_b0',
|
|
|
|
model_fn=tm.efficientnet_b0,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
model_attribute=ModelAttribute(has_stochastic_depth_prob=True))
|
|
|
|
model_zoo.register(name='torchvision_googlenet',
|
|
|
|
model_fn=tm.googlenet,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=google_net_output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_inception_v3',
|
|
|
|
model_fn=tm.inception_v3,
|
|
|
|
data_gen_fn=inception_v3_data_gen_fn,
|
|
|
|
output_transform_fn=inception_v3_output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_mobilenet_v2',
|
|
|
|
model_fn=tm.mobilenet_v2,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_mobilenet_v3_small',
|
|
|
|
model_fn=tm.mobilenet_v3_small,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_mnasnet0_5',
|
|
|
|
model_fn=tm.mnasnet0_5,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_resnet18',
|
|
|
|
model_fn=tm.resnet18,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_regnet_x_16gf',
|
|
|
|
model_fn=tm.regnet_x_16gf,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_resnext50_32x4d',
|
|
|
|
model_fn=tm.resnext50_32x4d,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_shufflenet_v2_x0_5',
|
|
|
|
model_fn=tm.shufflenet_v2_x0_5,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_squeezenet1_0',
|
|
|
|
model_fn=tm.squeezenet1_0,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
|
|
|
|
model_zoo.register(name='torchvision_vgg11',
|
|
|
|
model_fn=tm.vgg11,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_wide_resnet50_2',
|
|
|
|
model_fn=tm.wide_resnet50_2,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
|
|
|
|
if version.parse(torchvision.__version__) >= version.parse('0.12.0'):
|
|
|
|
model_zoo.register(name='torchvision_vit_b_16',
|
|
|
|
model_fn=tm.vit_b_16,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn)
|
|
|
|
model_zoo.register(name='torchvision_convnext_base',
|
|
|
|
model_fn=tm.convnext_base,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
model_attribute=ModelAttribute(has_stochastic_depth_prob=True))
|
|
|
|
|
|
|
|
if version.parse(torchvision.__version__) >= version.parse('0.13.0'):
|
|
|
|
model_zoo.register(
|
|
|
|
name='torchvision_swin_s',
|
|
|
|
model_fn=swin_s,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=swin_s_output_output_transform_fn,
|
|
|
|
)
|
|
|
|
model_zoo.register(name='torchvision_efficientnet_v2_s',
|
|
|
|
model_fn=tm.efficientnet_v2_s,
|
|
|
|
data_gen_fn=data_gen_fn,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
model_attribute=ModelAttribute(has_stochastic_depth_prob=True))
|