mirror of https://github.com/hpcaitech/ColossalAI
23 lines
706 B
Python
23 lines
706 B
Python
|
from typing import Tuple
|
||
|
|
||
|
import torch
|
||
|
|
||
|
|
||
|
def get_shard(tensor: torch.Tensor, rank: int, world_size: int) -> Tuple[torch.Tensor, int]:
|
||
|
"""Return the local shard of a full tensor."""
|
||
|
# Shard using torch.chunk to match all-gather/reduce-scatter.
|
||
|
chunks = list(torch.flatten(tensor).chunk(world_size))
|
||
|
while len(chunks) < world_size:
|
||
|
chunks.append(chunks[0].new_empty(0))
|
||
|
|
||
|
# Determine number of padding elements.
|
||
|
num_to_pad = chunks[0].numel() - chunks[rank].numel()
|
||
|
assert num_to_pad >= 0, num_to_pad
|
||
|
|
||
|
shard = torch.zeros_like(chunks[0])
|
||
|
length = chunks[rank].size(0)
|
||
|
shard_temp = shard[:length]
|
||
|
shard_temp.copy_(chunks[rank])
|
||
|
|
||
|
return shard, num_to_pad
|