ColossalAI/colossalai/context/process_group_initializer/initializer_pipeline.py

64 lines
2.7 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from torch import distributed as dist
from colossalai.registry import DIST_GROUP_INITIALIZER
from .process_group_initializer import ProcessGroupInitializer
from ..parallel_mode import ParallelMode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_Pipeline(ProcessGroupInitializer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.data_group_size = self.world_size // self.data_parallel_size
self.pipeline_stage_size = self.data_group_size // self.pipeline_parallel_size
def init_dist_group(self):
dist_settings = list()
for i in range(self.data_parallel_size):
for j in range(self.pipeline_stage_size):
pipe_ranks = list(
range(i * self.data_group_size + j,
(i + 1) * self.data_group_size,
self.pipeline_stage_size))
pipe_group_size = len(pipe_ranks)
pipe_group = dist.new_group(pipe_ranks)
if self.rank in pipe_ranks:
local_rank = pipe_ranks.index(self.rank)
group_world_size = pipe_group_size
process_group = pipe_group
ranks_in_group = pipe_ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE)))
for k in range(pipe_group_size):
first = pipe_ranks[k]
second = pipe_ranks[(k + 1) % pipe_group_size]
ranks = [first, second]
group = dist.new_group(ranks)
if self.rank == first:
local_rank = 0
group_world_size = 2
process_group = group
ranks_in_group = ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE_NEXT)))
elif self.rank == second:
local_rank = 1
group_world_size = 2
process_group = group
ranks_in_group = ranks
dist_settings.append(
tuple((local_rank, group_world_size,
process_group, ranks_in_group,
ParallelMode.PIPELINE_PREV)))
return dist_settings