mirror of https://github.com/hpcaitech/ColossalAI
100 lines
3.3 KiB
Python
100 lines
3.3 KiB
Python
|
from contextlib import nullcontext
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
|
||
|
import colossalai
|
||
|
from colossalai.booster import Booster
|
||
|
from colossalai.booster.plugin import HybridParallelPlugin
|
||
|
from colossalai.fx import is_compatible_with_meta
|
||
|
from colossalai.lazy.lazy_init import LazyInitContext
|
||
|
from colossalai.nn.optimizer import HybridAdam
|
||
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
||
|
from tests.kit.model_zoo import model_zoo
|
||
|
|
||
|
|
||
|
def run_fn(init_method, model_fn, data_gen_fn, output_transform_fn) -> Optional[str]:
|
||
|
try:
|
||
|
if init_method == 'lazy':
|
||
|
ctx = LazyInitContext()
|
||
|
else:
|
||
|
ctx = nullcontext()
|
||
|
plugin = HybridParallelPlugin(tp_size=2, pp_size=2, num_microbatches=4, precision='bf16')
|
||
|
booster = Booster(plugin=plugin)
|
||
|
with ctx:
|
||
|
model = model_fn()
|
||
|
optimizer = HybridAdam(model.parameters(), lr=1e-3)
|
||
|
criterion = lambda x: x.mean()
|
||
|
data = data_gen_fn()
|
||
|
|
||
|
data = {
|
||
|
k: v.to('cuda').repeat(4, 1) if torch.is_tensor(v) or 'Tensor' in v.__class__.__name__ else v
|
||
|
for k, v in data.items()
|
||
|
}
|
||
|
|
||
|
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
|
||
|
|
||
|
data_iter = iter([data])
|
||
|
|
||
|
def _criterion(outputs, inputs):
|
||
|
outputs = output_transform_fn(outputs)
|
||
|
output_key = list(outputs.keys())[0]
|
||
|
loss = criterion(outputs[output_key])
|
||
|
return loss
|
||
|
|
||
|
booster.execute_pipeline(data_iter, model, _criterion, optimizer, return_loss=True, return_outputs=False)
|
||
|
optimizer.step()
|
||
|
|
||
|
except Exception as e:
|
||
|
return repr(e)
|
||
|
|
||
|
|
||
|
@parameterize('init_method', ['none', 'lazy'])
|
||
|
def check_3d_plugin(init_method: str = 'none', early_stop: bool = True):
|
||
|
"""check gemini plugin over model zoo
|
||
|
|
||
|
Args:
|
||
|
early_stop (bool, optional): Whether to stop when getting the first error. Defaults to True.
|
||
|
"""
|
||
|
is_support_meta = is_compatible_with_meta()
|
||
|
if not is_support_meta and init_method == 'lazy':
|
||
|
return
|
||
|
|
||
|
passed_models = []
|
||
|
failed_info = {} # (model_name, error) pair
|
||
|
|
||
|
# TODO(ver217): add more models
|
||
|
for name, (model_fn, data_gen_fn, output_transform_fn, _,
|
||
|
_) in model_zoo.get_sub_registry('transformers_llama_for_casual_lm').items():
|
||
|
err = run_fn(init_method, model_fn, data_gen_fn, output_transform_fn)
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
if err is None:
|
||
|
passed_models.append(name)
|
||
|
else:
|
||
|
failed_info[name] = err
|
||
|
if early_stop:
|
||
|
break
|
||
|
|
||
|
if dist.get_rank() == 0:
|
||
|
print(f'Init method: {init_method}')
|
||
|
print(f'Passed models({len(passed_models)}): {passed_models}\n\n')
|
||
|
print(f'Failed models({len(failed_info)}): {list(failed_info.keys())}\n\n')
|
||
|
assert len(failed_info) == 0, '\n'.join([f'{k}: {v}' for k, v in failed_info.items()])
|
||
|
|
||
|
|
||
|
def run_dist(rank, world_size, port, early_stop: bool = True):
|
||
|
# init dist env
|
||
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
||
|
check_3d_plugin(early_stop=early_stop)
|
||
|
|
||
|
|
||
|
@rerun_if_address_is_in_use()
|
||
|
def test_gemini_plugin(early_stop: bool = True):
|
||
|
spawn(run_dist, 4, early_stop=early_stop)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_gemini_plugin(early_stop=False)
|