ColossalAI/tests/test_zero/test_low_level/test_zero_init.py

56 lines
1.6 KiB
Python
Raw Normal View History

import pytest
import torch
import torch.distributed as dist
import torch.nn as nn
import colossalai
from colossalai.tensor import ProcessGroup
from colossalai.testing import spawn
from colossalai.utils import get_current_device
from colossalai.zero import ColoInitContext, LowLevelZeroOptimizer
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_init():
dp_2_tp_2_pg = ProcessGroup(dp_degree=2, tp_degree=2)
model1 = MlpModel().cuda()
with ColoInitContext(device=get_current_device(), default_pg=dp_2_tp_2_pg):
model2 = MlpModel()
optimizer1 = LowLevelZeroOptimizer(torch.optim.Adam(model1.parameters(), lr=1))
optimizer2 = LowLevelZeroOptimizer(torch.optim.Adam(model2.parameters(), lr=1))
assert optimizer1._local_rank == optimizer2._local_rank
assert optimizer1._world_size == optimizer2._world_size
mp_group1 = optimizer1.tp_pg
mp_group2 = optimizer2.tp_pg
assert dist.get_world_size(mp_group1) == dist.get_world_size(mp_group2)
assert dist.get_rank(mp_group1) == dist.get_rank(mp_group2)
def run_dist(rank, world_size, port):
config_dict = dict(parallel=dict(data=2, tensor=dict(size=2, mode='1d')))
colossalai.launch(config=config_dict, rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_init()
@pytest.mark.dist
def test_zero_init():
spawn(run_dist, 4)
if __name__ == '__main__':
test_zero_init()