ColossalAI/colossalai/utils/profiler/mem_profiler.py

51 lines
1.6 KiB
Python
Raw Normal View History

from pathlib import Path
from typing import Union
from colossalai.engine import Engine
from torch.utils.tensorboard import SummaryWriter
from colossalai.engine.ophooks import MemTracerOpHook
from colossalai.utils.profiler import BaseProfiler
class MemProfiler(BaseProfiler):
"""Wraper of MemOpHook, used to show GPU memory usage through each iteration
To use this profiler, you need to pass an `engine` instance. And the usage is same like
CommProfiler.
mm_prof = MemProfiler(engine)
with ProfilerContext([mm_prof]) as prof:
writer = SummaryWriter("mem")
engine.train()
...
prof.to_file("./log")
prof.to_tensorboard(writer)
"""
def __init__(self, engine: Engine, warmup: int = 50, refreshrate: int = 10) -> None:
super().__init__(profiler_name="MemoryProfiler", priority=0)
self._mem_tracer = MemTracerOpHook(warmup=warmup, refreshrate=refreshrate)
self._engine = engine
def enable(self) -> None:
self._engine.add_hook(self._mem_tracer)
def disable(self) -> None:
self._engine.remove_hook(self._mem_tracer)
def to_tensorboard(self, writer: SummaryWriter) -> None:
stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats']
for info, i in enumerate(stats):
writer.add_scalar(
"memory_usage/GPU",
info,
i
)
def to_file(self, data_file: Path) -> None:
self._mem_tracer.save_results(data_file)
def show(self) -> None:
stats = self._mem_tracer.async_mem_monitor.state_dict['mem_stats']
print(stats)