|
|
|
import torch
|
|
|
|
import transformers
|
|
|
|
|
|
|
|
from ..registry import ModelAttribute, model_zoo
|
|
|
|
|
|
|
|
try:
|
|
|
|
from transformers import LlamaConfig
|
|
|
|
|
|
|
|
HAS_LLAMA = True
|
|
|
|
except ImportError:
|
|
|
|
HAS_LLAMA = False
|
|
|
|
|
|
|
|
if HAS_LLAMA:
|
|
|
|
# ===============================
|
|
|
|
# Register LLaMA
|
|
|
|
# ===============================
|
|
|
|
|
|
|
|
def data_gen():
|
|
|
|
# the input ids are corresponding to the sentence
|
|
|
|
# 'Hello, my dog is cute'
|
|
|
|
#
|
|
|
|
# the code is give below:
|
|
|
|
# -----------------------------------
|
|
|
|
# from transformers import LlamaTokenizerFast
|
|
|
|
# tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
|
|
|
|
# input = 'Hello, my dog is cute'
|
|
|
|
# tokenized_input = tokenizer(input, return_tensors='pt').to('cuda')
|
|
|
|
# -----------------------------------
|
|
|
|
|
|
|
|
input_ids = torch.Tensor(
|
|
|
|
[
|
|
|
|
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
|
|
|
[1, 15043, 29892, 590, 11203, 338, 274, 1082, 1, 15043, 29892, 590, 11203, 338, 274, 1082],
|
|
|
|
]
|
|
|
|
).long()
|
|
|
|
attention_mask = torch.ones_like(input_ids)
|
|
|
|
return dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
|
|
|
|
|
# label is needed for causal lm
|
|
|
|
def data_gen_for_causal_lm():
|
|
|
|
data = data_gen()
|
|
|
|
|
|
|
|
# Test padded sequence
|
|
|
|
padding = torch.zeros(2, data["input_ids"].shape[1] // 2, dtype=torch.long)
|
|
|
|
data["input_ids"] = torch.cat([data["input_ids"], padding], dim=1)
|
|
|
|
data["attention_mask"] = torch.cat([data["attention_mask"], padding], dim=1)
|
|
|
|
|
|
|
|
ignore_idx = -100
|
|
|
|
labels = data["input_ids"].clone()
|
|
|
|
labels[~data["attention_mask"].bool()] = ignore_idx
|
|
|
|
data["labels"] = labels
|
|
|
|
return data
|
|
|
|
|
|
|
|
# transform the output to a dict
|
|
|
|
output_transform_fn = lambda x: x
|
|
|
|
|
|
|
|
# function to get the loss
|
|
|
|
loss_fn = lambda output: output["last_hidden_state"].mean()
|
|
|
|
loss_fn_for_causal_lm = lambda output: output["loss"]
|
|
|
|
loss_fn_for_seq_classification = lambda output: output["logits"].mean()
|
|
|
|
|
|
|
|
config = LlamaConfig(
|
|
|
|
num_hidden_layers=8,
|
|
|
|
hidden_size=32,
|
|
|
|
intermediate_size=64,
|
|
|
|
num_attention_heads=4,
|
|
|
|
max_position_embeddings=128,
|
|
|
|
)
|
|
|
|
|
|
|
|
if hasattr(config, "pad_token_id"):
|
|
|
|
config.pad_token_id = config.eos_token_id
|
|
|
|
|
|
|
|
# register the following models
|
|
|
|
# transformers.LlamaForCausalLM,
|
|
|
|
# transformers.LlamaModel,
|
|
|
|
# transformers.LlamaForSequenceClassification,
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_llama_for_causal_lm",
|
|
|
|
model_fn=lambda: transformers.LlamaForCausalLM(config),
|
|
|
|
data_gen_fn=data_gen_for_causal_lm,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn_for_causal_lm,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_llama",
|
|
|
|
model_fn=lambda: transformers.LlamaModel(config),
|
|
|
|
data_gen_fn=data_gen,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|
|
|
|
model_zoo.register(
|
|
|
|
name="transformers_llama_for_sequence_classification",
|
|
|
|
model_fn=lambda: transformers.LlamaForSequenceClassification(config),
|
|
|
|
data_gen_fn=data_gen,
|
|
|
|
output_transform_fn=output_transform_fn,
|
|
|
|
loss_fn=loss_fn_for_seq_classification,
|
|
|
|
model_attribute=ModelAttribute(has_control_flow=True),
|
|
|
|
)
|