Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

83 lines
2.5 KiB

from functools import partial
import diffusers
import torch
import transformers
from ..registry import model_zoo
BATCH_SIZE = 2
SEQ_LENGTH = 5
HEIGHT = 224
WIDTH = 224
IN_CHANNELS = 3
LATENTS_SHAPE = (BATCH_SIZE, IN_CHANNELS, HEIGHT // 7, WIDTH // 7)
TIME_STEP = 3
data_vae_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32))
data_unet_fn = lambda: dict(sample=torch.randn(2, 3, 32, 32), timestep=3)
identity_output = lambda x: x
clip_vision_model_output = lambda x: dict(pooler_output=x[1])
def data_clip_model():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
position_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
return dict(
input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids
)
def data_clip_text():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGTH), dtype=torch.int64)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_clip_vision():
pixel_values = torch.zeros((BATCH_SIZE, IN_CHANNELS, HEIGHT, WIDTH), dtype=torch.float32)
return dict(pixel_values=pixel_values)
model_zoo.register(
name="diffusers_auto_encoder_kl",
model_fn=diffusers.AutoencoderKL,
data_gen_fn=data_vae_fn,
output_transform_fn=identity_output,
)
model_zoo.register(
name="diffusers_vq_model", model_fn=diffusers.VQModel, data_gen_fn=data_vae_fn, output_transform_fn=identity_output
)
model_zoo.register(
name="diffusers_clip_model",
model_fn=partial(transformers.CLIPModel, config=transformers.CLIPConfig()),
data_gen_fn=data_clip_model,
output_transform_fn=identity_output,
)
model_zoo.register(
name="diffusers_clip_text_model",
model_fn=partial(transformers.CLIPTextModel, config=transformers.CLIPTextConfig()),
data_gen_fn=data_clip_text,
output_transform_fn=identity_output,
)
model_zoo.register(
name="diffusers_clip_vision_model",
model_fn=partial(transformers.CLIPVisionModel, config=transformers.CLIPVisionConfig()),
data_gen_fn=data_clip_vision,
output_transform_fn=clip_vision_model_output,
)
model_zoo.register(
name="diffusers_unet2d_model",
model_fn=diffusers.UNet2DModel,
data_gen_fn=data_unet_fn,
output_transform_fn=identity_output,
)