ColossalAI/colossalai/legacy/nn/loss/loss_2d.py

158 lines
5.6 KiB
Python
Raw Normal View History

import torch
import torch.distributed as dist
from torch.cuda.amp import custom_bwd, custom_fwd
from torch.nn.functional import cross_entropy
from torch.nn.modules.loss import _Loss
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.legacy.nn.layer.parallel_2d import reduce_by_batch_2d, split_batch_2d
from colossalai.legacy.nn.layer.parallel_2d._utils import assert_summa_initialization
from colossalai.legacy.registry import LOSSES
from colossalai.utils import get_current_device
@LOSSES.register_module
class CrossEntropyLoss2D(_Loss):
2022-03-25 05:02:39 +00:00
r"""Cross entropy loss for 2D parallelism
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
The ``args`` and ``kwargs`` should include parameters below:
::
2022-03-25 05:02:39 +00:00
weight (Tensor, optional)
size_average (bool, optional)
ignore_index (int, optional)
reduce (bool, optional)
label_smoothing (float, optional)
2022-01-21 02:44:30 +00:00
2022-03-31 03:36:56 +00:00
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
2022-03-25 05:02:39 +00:00
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
"""
def __init__(self, reduction=True, *args, **kwargs):
super().__init__()
assert_summa_initialization()
self.reduction_mean = reduction
self.loss_args = args
self.loss_kwargs = kwargs
def forward(self, logits, targets):
2022-03-25 05:02:39 +00:00
"""Calculate loss between logits and targets.
2022-01-21 02:44:30 +00:00
2022-03-25 05:02:39 +00:00
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
Returns:
float: the loss between logits and targets.
2022-01-21 02:44:30 +00:00
"""
targets = split_batch_2d(targets)
loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2d(loss, True)
return loss
class _VocabParallelCrossEntropy2D(torch.autograd.Function):
### Modified based on megatron.mpu.cross_entropy ###
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, logits, targets):
# logits: [b/q, h/q]
# labels: [b/q]
# loss: [b/q]
# vocab_parallel_logits: [b/q, s, v/q]
# target: [b/q, s]
logits_max = torch.max(logits, dim=-1)[0]
torch.distributed.all_reduce(logits_max,
op=torch.distributed.ReduceOp.MAX,
group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
# Subtract the maximum value.
# vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
logits = logits - logits_max.unsqueeze(dim=-1)
vocab_size = logits.size(-1)
rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
vocab_start = rank * (vocab_size)
vocab_end = (rank + 1) * (vocab_size) - 1
target_mask = (targets < vocab_start) | (targets > vocab_end)
masked_target = targets.clone() - vocab_start
masked_target[target_mask] = 0
arange_1d = torch.arange(
start=0,
end=logits.size()[0],
)
predicted_logits = logits[arange_1d, masked_target]
predicted_logits[target_mask] = 0.
dist.all_reduce(predicted_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
exp_logits = torch.exp(logits)
sum_exp_logits = exp_logits.sum(dim=1)
dist.all_reduce(sum_exp_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
loss = torch.log(sum_exp_logits) - predicted_logits
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
ctx.save_for_backward(exp_logits, target_mask, masked_target)
return loss
@staticmethod
@custom_bwd
def backward(ctx, output_grad):
# Retrieve tensors from the forward path.
softmax, target_mask, masked_target = ctx.saved_tensors
# All the inputs have softmax as their gradient.
grad_input = softmax
# For simplicity, work with the 2D gradient.
partition_vocab_size = softmax.size()[-1]
grad_2d = grad_input.view(-1, partition_vocab_size)
# Add the gradient from matching classes.
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device())
grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float())
# Finally elementwise multiplication with the output gradients.
grad_input.mul_(output_grad.unsqueeze(dim=-1))
return grad_input, None
@LOSSES.register_module
class VocabParallelCrossEntropyLoss2D(_Loss):
2022-03-25 05:02:39 +00:00
"""Vocab parallel cross entropy loss for 2D parallelism.
2022-03-25 05:02:39 +00:00
Args:
reduction (bool, optional): whether to average the loss, defaults to True.
"""
def __init__(self, reduction=True):
super().__init__()
self.reduction_mean = reduction
def forward(self, logits, targets):
2022-03-25 05:02:39 +00:00
"""Calculate loss between logits and targets.
2022-03-25 05:02:39 +00:00
Args:
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
"""
targets = split_batch_2d(targets)
loss = _VocabParallelCrossEntropy2D.apply(
logits,
targets,
)
if self.reduction_mean:
loss = loss.mean()
loss = reduce_by_batch_2d(loss, True)
return loss