mirror of https://github.com/hpcaitech/ColossalAI
38 lines
1006 B
Python
38 lines
1006 B
Python
|
#!/usr/bin/env python
|
||
|
# -*- encoding: utf-8 -*-
|
||
|
|
||
|
import torch.nn as nn
|
||
|
|
||
|
from colossalai.builder import build_layer
|
||
|
from colossalai.registry import LAYERS
|
||
|
|
||
|
|
||
|
@LAYERS.register_module
|
||
|
class LambdaWrapper(nn.Module):
|
||
|
"""Wrap a function to nn.Module, which takes a config of layers and can fully access them
|
||
|
|
||
|
:param func: user customed function
|
||
|
:type func: Callable
|
||
|
:param layers_cfg: config of layers, defaults to None
|
||
|
:type layers_cfg: dict, optional
|
||
|
"""
|
||
|
|
||
|
def __init__(self, func, layers_cfg: dict = None):
|
||
|
super().__init__()
|
||
|
self.func = func
|
||
|
self.layers = self._build_layers(layers_cfg)
|
||
|
|
||
|
def _build_layers(self, layers_cfg: dict):
|
||
|
if layers_cfg is None:
|
||
|
return None
|
||
|
else:
|
||
|
layers = []
|
||
|
|
||
|
for cfg in layers_cfg:
|
||
|
layer = build_layer(cfg)
|
||
|
layers.append(layer)
|
||
|
return layers
|
||
|
|
||
|
def forward(self, *args, **kwargs):
|
||
|
return self.func(self, *args, **kwargs)
|