ColossalAI/colossalai/nn/layer/parallel_sequence/layers.py

189 lines
7.0 KiB
Python
Raw Normal View History

2021-10-28 16:21:23 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.layer.parallel_sequence._operation import RingQK, RingAV
from colossalai.registry import LAYERS
@LAYERS.register_module
class TransformerSelfAttentionRing(nn.Module):
"""Parallel self-attention layer abstract class.
Self-attention layer takes input with size [b, s, h]
and returns output of the same size.
:param hidden_size: hidden size
:type hidden_size: int
:param kv_channels: channels of key/value tensor
:type kv_channels: int
:param num_attention_heads: number of attention heads
:type num_attention_heads: int
:param attention_dropout: dropout probability for attention layer
:type attention_dropout: float
"""
def __init__(self,
hidden_size,
kv_channels,
num_attention_heads,
attention_dropout,
):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
projection_size = kv_channels * num_attention_heads
self.hidden_size_per_attention_head = projection_size // num_attention_heads
self.world_size = gpc.get_world_size(ParallelMode.SEQUENCE)
# Strided linear layer.
self.query_key_value = nn.Linear(
hidden_size,
3 * projection_size,
)
# coeff = None
self.norm_factor = math.sqrt(self.hidden_size)
# TODO: add apply_query_key_layer_scaling when we have the kernel module
# if self.apply_query_key_layer_scaling:
# coeff = self.layer_number
# self.norm_factor *= coeff
# TODO: add fused scale mask softmax kernel when we have the kernel module
# self.scale_mask_softmax = FusedScaleMaskSoftmax(
# self.fp16, self.bf16,
# self.attn_mask_type,
# masked_softmax_fusion,
# attention_mask_func,
# self.attention_softmax_in_fp32,
# coeff)
self.attention_dropout = nn.Dropout(attention_dropout)
# Output.
self.dense = nn.Linear(
projection_size,
hidden_size,
bias=True)
def forward(self, hidden_states, attention_mask):
# hidden_states: [sq, b, h]
sub_seq_length, batch_size, hidden_size = hidden_states.size()
# =====================
# Query, Key, and Value
# =====================
# Attention heads [sq, b, h] --> [sq, b, (3 * hn * num_heads)]
mixed_x_layer = self.query_key_value(hidden_states)
# [sq, b, num_heads, 3 * hn] --> 3 [sq, b, num_heads, hn]
new_tensor_shape = mixed_x_layer.size()[:-1] + (self.num_attention_heads,
3 * self.hidden_size_per_attention_head)
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
# split into query, key and value
last_dim = mixed_x_layer.dim() - 1
last_dim_value = mixed_x_layer.size()[-1]
assert last_dim_value % 3 == 0, 'the last dimension is not a multiple of 3, ' \
'cannot be divided into query, key and value'
partition_size = last_dim_value // 3
(query_layer, key_layer, value_layer) = torch.split(
mixed_x_layer, partition_size, dim=last_dim)
# ===================================
# Raw attention scores. [b, num_heads, s, s]
# ===================================
# [b, num_heads, sq, sk]
output_size = (query_layer.size(1),
query_layer.size(2),
query_layer.size(0),
key_layer.size(0) * self.world_size)
# [sq, b, num_heads, hn] -> [sq, b * num_heads, hn]
query_layer = query_layer.view(output_size[2],
output_size[0] * output_size[1], -1)
# [sk, b, num_heads, hn] -> [sk, b * num_heads, hn]
key_layer = key_layer.view(key_layer.size(0),
output_size[0] * output_size[1], -1)
# [b, sq, sk]
attention_scores = RingQK.apply(
# [b * num_heads, sq, hn]
query_layer.transpose(0, 1).contiguous(),
key_layer.transpose(0, 1).contiguous(), # [b * num_heads, sk, hn],
batch_size,
self.num_attention_heads,
sub_seq_length
)
attention_scores /= self.norm_factor
# change view to [b, num_heads, sq, sk]
attention_scores = attention_scores.view(*output_size)
attention_scores = attention_scores.unsqueeze(1)
attention_scores = attention_scores + attention_mask
attention_probs = F.softmax(attention_scores, dim=-1)
attention_probs = attention_probs.squeeze(1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
# with mpu.get_cuda_rng_tracker().fork():
# TODO: check if a rng tracker is needed
attention_probs = self.attention_dropout(attention_probs)
# context layer shape: [b, num_heads, sq, hn]
output_size = (value_layer.size(1),
value_layer.size(2),
query_layer.size(0),
value_layer.size(3))
#
# # change view [sk, b * num_heads, hn]
value_layer = value_layer.contiguous().view(value_layer.size(0),
output_size[0] * output_size[1], -1)
# # change view [b * num_heads, sq, sk]
attention_probs = attention_probs.view(attention_probs.size(0) * attention_probs.size(1),
attention_probs.size(2),
attention_probs.size(3))
# matmul: [b*num_heads, sq, hn]
# context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
context_layer = RingAV.apply(
attention_probs,
value_layer.transpose(0, 1).contiguous(),
batch_size,
self.num_attention_heads,
self.hidden_size_per_attention_head,
sub_seq_length
)
# # change view [b, num_heads, sq, hn]
context_layer = context_layer.view(*output_size)
# # [b, np, sq, hn] --> [sq, b, np, hn]
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
# # [sq, b, np, hn] --> [sq, b, hp]
new_context_layer_shape = context_layer.size()[:-2] + (
self.hidden_size_per_attention_head * self.num_attention_heads,)
context_layer = context_layer.view(*new_context_layer_shape)
# context_layer = context_layer.transpose(1, 0).contiguous()
output = self.dense(context_layer)
bias = self.dense.bias
return output, bias