ColossalAI/colossalai/nn/layer/parallel_1d/_vit.py

412 lines
14 KiB
Python
Raw Normal View History

Develop/experiments (#59) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> * Split conv2d, class token, positional embedding in 2d, Fix random number in ddp Fix convergence in cifar10, Imagenet1000 * Integrate 1d tensor parallel in Colossal-AI (#39) * fixed 1D and 2D convergence (#38) * optimized 2D operations * fixed 1D ViT convergence problem * Feature/ddp (#49) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * support torch ddp * fix loss accumulation * add log for ddp * change seed * modify timing hook Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * Feature/pipeline (#40) * remove redundancy func in setup (#19) (#20) * use env to control the language of doc (#24) (#25) * Support TP-compatible Torch AMP and Update trainer API (#27) * Add gradient accumulation, fix lr scheduler * fix FP16 optimizer and adapted torch amp with tensor parallel (#18) * fixed bugs in compatibility between torch amp and tensor parallel and performed some minor fixes * fixed trainer * Revert "fixed trainer" This reverts commit 2e0b0b76990e8d4e337add483d878c0f61cf5097. * improved consistency between trainer, engine and schedule (#23) Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> * add an example of ViT-B/16 and remove w_norm clipping in LAMB (#29) * add explanation for ViT example (#35) (#36) * optimize communication of pipeline parallel * fix grad clip for pipeline Co-authored-by: Frank Lee <somerlee.9@gmail.com> Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> * optimized 3d layer to fix slow computation ; tested imagenet performance with 3d; reworked lr_scheduler config definition; fixed launch args; fixed some printing issues; simplified apis of 3d layers (#51) * Update 2.5d layer code to get a similar accuracy on imagenet-1k dataset * update api for better usability (#58) update api for better usability Co-authored-by: 1SAA <c2h214748@gmail.com> Co-authored-by: ver217 <lhx0217@gmail.com> Co-authored-by: puck_WCR <46049915+WANG-CR@users.noreply.github.com> Co-authored-by: binmakeswell <binmakeswell@gmail.com> Co-authored-by: アマデウス <kurisusnowdeng@users.noreply.github.com> Co-authored-by: BoxiangW <45734921+BoxiangW@users.noreply.github.com>
2021-12-09 07:08:29 +00:00
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
from colossalai import context
import torch
from torch import nn as nn, Tensor, distributed as dist
from torch.nn.init import _calculate_fan_in_and_fan_out
from colossalai.context import seed, ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.layer._common_utils import divide, ACT2FN
from colossalai.registry import LAYERS
from colossalai.utils import checkpoint
from colossalai.utils import get_current_device
from .layers import Linear1D_Col, Linear1D_Row
from ..base_layer import ParallelLayer
from .._common_utils import to_2tuple
from ..fused_bias_gelu import bias_gelu_impl
@LAYERS.register_module
class ViTMLP1D(ParallelLayer):
"""MLP layer for 1D parallel Vision Transformer
:param in_features: size of each input sample
:type in_features: int
:param mlp_ratio: hidden size of MLP divided by embedding dim
:type mlp_ratio: int
:param act_func: activation function, defaults to 'gelu'
:type act_func: str, optional
:param dropout_prob: dropout probability, defaults to 0.
:type dropout_prob: float, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param checkpoint: whether to checkpoint the layer, defaults to False
:type checkpoint: bool, optional
"""
def __init__(self,
in_features: int,
mlp_ratio: int,
act_func: str = 'gelu',
dropout_prob: float = 0.,
dtype=None,
checkpoint: bool = False,
skip_bias_add: bool = False,
weight_init='torch'
):
super().__init__()
self.in_features = in_features
self.mlp_ratio = mlp_ratio
self.checkpoint = checkpoint
self.skip_bias_add = skip_bias_add
assert weight_init in ('torch', 'jax')
if act_func == 'fused_gelu':
self.act = bias_gelu_impl
skip_dense_1_add_bias = True
else:
self.act = ACT2FN[act_func]
skip_dense_1_add_bias = False
# Project to mlp_ratio * h.
self.dense_1 = Linear1D_Col(
self.in_features,
int(self.mlp_ratio * self.in_features),
dtype=dtype,
gather_output=False,
skip_bias_add=skip_dense_1_add_bias,
init_weight=weight_init,
init_bias=weight_init
)
# Project back to h.
self.dense_2 = Linear1D_Row(
int(self.mlp_ratio * self.in_features),
self.in_features,
dtype=dtype,
parallel_input=True,
init_weight=weight_init, init_bias=weight_init
)
self.dropout = nn.Dropout(dropout_prob)
def _forward(self, hidden_states: Tensor) -> Tensor:
if self.act == bias_gelu_impl:
intermediate_output, bias = self.dense_1(hidden_states)
intermediate_output = self.act(intermediate_output, bias)
else:
intermediate_output = self.dense_1(hidden_states)
intermediate_output = self.act(intermediate_output)
with seed(ParallelMode.TENSOR):
intermediate_output = self.dropout(intermediate_output)
output = self.dense_2(intermediate_output)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor) -> Tensor:
return checkpoint(self._forward, hidden_states)
def forward(self, hidden_states: Tensor) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states)
else:
return self._forward(hidden_states)
@LAYERS.register_module
class ViTSelfAttention1D(ParallelLayer):
"""Self-attention layer for 1D parallel Vision Transformer
:param hidden_size: hidden size
:type hidden_size: int
:param num_attention_heads: number of attention heads
:type num_attention_heads: int
:param attention_dropout_prob: dropout probability for attention layers
:type attention_dropout_prob: float
:param hidden_dropout_prob: dropout probability for hidden layers
:type hidden_dropout_prob: float
:param dtype: dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param checkpoint: whether to checkpoint the layer, defaults to False
:type checkpoint: bool, optional
"""
def __init__(self,
hidden_size: int,
num_attention_heads: int,
attention_dropout_prob: float,
hidden_dropout_prob: float,
dtype=None,
checkpoint: bool = False,
weight_init='torch'
):
super().__init__()
self.hidden_size = hidden_size
self.attention_head_size = divide(hidden_size, num_attention_heads)
self.num_attention_heads_per_partition = divide(num_attention_heads, gpc.tensor_parallel_size)
self.hidden_size_per_partition = divide(hidden_size, gpc.tensor_parallel_size)
self.checkpoint = checkpoint
assert weight_init in ('torch', 'jax')
if weight_init == 'jax':
init_bias = 'zero'
else:
init_bias = weight_init
self.query_key_value = Linear1D_Col(
hidden_size,
3 * hidden_size,
dtype=dtype,
init_weight=weight_init,
init_bias=init_bias
)
self.attention_dropout = nn.Dropout(attention_dropout_prob)
self.dense = Linear1D_Row(
hidden_size,
hidden_size,
dtype=dtype,
parallel_input=True,
init_weight=weight_init, init_bias=init_bias
)
self.dropout = nn.Dropout(hidden_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
def _forward(self, hidden_states: Tensor) -> Tensor:
query_key_value = self.query_key_value(hidden_states)
new_qkv_shape = query_key_value.shape[:-1] + \
(self.num_attention_heads_per_partition, 3 * self.attention_head_size)
query_key_value = query_key_value.view(new_qkv_shape)
query_key_value = query_key_value.permute((0, 2, 1, 3))
query_layer, key_layer, value_layer = torch.chunk(
query_key_value, 3, dim=-1)
attention_scores = torch.matmul(
query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / \
math.sqrt(self.attention_head_size)
attention_probs = self.softmax(attention_scores)
with seed(ParallelMode.TENSOR):
attention_probs = self.attention_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.transpose(1, 2)
new_context_layer_shape = context_layer.size()[
:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.reshape(new_context_layer_shape)
output = self.dense(context_layer)
output = self.dropout(output)
return output
def _checkpoint_forward(self, hidden_states: Tensor) -> Tensor:
return checkpoint(self._forward, hidden_states)
def forward(self, hidden_states: Tensor) -> Tensor:
if self.checkpoint:
return self._checkpoint_forward(hidden_states)
else:
return self._forward(hidden_states)
@LAYERS.register_module
class ViTHead1D(ParallelLayer):
"""Output layer for 1D parallel Vision Transformer
:param hidden_size: hidden size
:type hidden_size: int
:param num_classes: number of classes
:type num_classes: int
:param dtype: dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
"""
def __init__(self,
hidden_size,
num_classes,
dtype=None,
weight_init='torch'
):
super().__init__()
assert weight_init in ('torch', 'jax')
if weight_init == 'jax':
init_weight = 'zero'
init_bias = 'zero'
else:
init_weight = weight_init
init_bias = weight_init
self.linear = Linear1D_Col(
hidden_size,
num_classes,
dtype=dtype,
gather_output=True,
init_weight=init_weight,
init_bias=init_bias
)
def forward(self, x: Tensor) -> Tensor:
x = x[:, 0]
x = self.linear(x)
return x
@LAYERS.register_module
class ViTHead(ParallelLayer):
"""Output layer for 1D parallel Vision Transformer
:param hidden_size: hidden size
:type hidden_size: int
:param num_classes: number of classes
:type num_classes: int
:param dtype: dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
"""
def __init__(self,
hidden_size,
num_classes,
dtype=None,
):
super().__init__()
self.linear = nn.Linear(
hidden_size,
num_classes,
dtype=dtype
)
self._broadcast_linear_params()
def _broadcast_linear_params(self) -> None:
self.to(get_current_device())
ranks = gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)
dist.broadcast(self.linear.weight, src=ranks[0],
group=gpc.get_group(ParallelMode.PARALLEL_1D))
dist.broadcast(self.linear.bias, src=ranks[0],
group=gpc.get_group(ParallelMode.PARALLEL_1D))
def forward(self, x: Tensor) -> Tensor:
x = x[:, 0]
x = self.linear(x)
return x
@LAYERS.register_module
class ViTPatchEmbedding1D(ParallelLayer):
""" 2D Image to Patch Embedding
:param img_size: iamge size
:type img_size: int
:param patch_size: patch size
:type patch_size: int
:param embed_dim: dimension of embedding
:type embed_dim: int
:param in_chans: number of channels of input image, defaults to 3
:type in_chans: int, optional
:param flatten: whether to flatten output tensor, defaults to True
:type flatten: bool, optional
"""
def __init__(self,
img_size,
patch_size,
embed_dim,
in_chans=3,
flatten=True,
weight_init='torch'):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0],
img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.flatten = flatten
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans,
self.embed_dim,
kernel_size=patch_size,
stride=patch_size
)
if weight_init == 'jax':
fan_in, _ = _calculate_fan_in_and_fan_out(self.proj.weight)
std = math.sqrt(1.0 / fan_in)
nn.init.trunc_normal_(self.proj.weight, std=std / .87962566103423978)
nn.init.zeros_(self.proj.bias)
# sync
self._broadcast_conv_params()
def _broadcast_conv_params(self) -> None:
self.to(get_current_device())
ranks = gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)
dist.broadcast(self.proj.weight, src=ranks[0],
group=gpc.get_group(ParallelMode.PARALLEL_1D))
dist.broadcast(self.proj.bias, src=ranks[0],
group=gpc.get_group(ParallelMode.PARALLEL_1D))
def forward(self, x: Tensor) -> Tensor:
B, C, H, W = x.shape
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x)
if self.flatten:
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
return x
@LAYERS.register_module
class ViTTokenFuser1D(ParallelLayer):
"""
Fuse cls token and pos embedding to the input
:param img_size: image size
:type img_size: int
:param patch_size: patch size
:type patch_size: int
:param embed_dim: dimension of embedding
:type embed_dim: int
:param drop_rate: dropout probability, defaults to 0.
:type drop_rate: float, optional
"""
def __init__(self,
img_size,
patch_size,
embed_dim,
drop_rate=0.
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
self.grid_size = (img_size[0] // patch_size[0],
img_size[1] // patch_size[1])
self.num_patches = self.grid_size[0] * self.grid_size[1]
self.embed_dim = embed_dim
self.cls_token = nn.Parameter(torch.zeros(
1, 1, self.embed_dim))
self.pos_embed = nn.Parameter(torch.empty(
1, self.num_patches + 1, self.embed_dim))
nn.init.trunc_normal_(self.pos_embed, std=.02)
# move to cuda before broadcast
self.to(get_current_device())
dist.broadcast(self.pos_embed,
src=gpc.get_ranks_in_group(ParallelMode.TENSOR)[0],
group=gpc.get_group(ParallelMode.TENSOR))
self.pos_drop = nn.Dropout(p=drop_rate)
def forward(self, x: Tensor) -> Tensor:
cls_token = self.cls_token.expand(x.shape[0], -1, -1)
x = torch.cat((cls_token, x), dim=1)
x = self.pos_drop(x + self.pos_embed)
return x.contiguous()