ColossalAI/colossalai/legacy/inference/dynamic_batching/ray_init_config.py

59 lines
1.6 KiB
Python
Raw Normal View History

[Inference] Dynamic Batching Inference, online and offline (#4953) * [inference] Dynamic Batching for Single and Multiple GPUs (#4831) * finish batch manager * 1 * first * fix * fix dynamic batching * llama infer * finish test * support different lengths generating * del prints * del prints * fix * fix bug --------- Co-authored-by: CjhHa1 <cjh18671720497outlook.com> * [inference] Async dynamic batching (#4894) * finish input and output logic * add generate * test forward * 1 * [inference]Re push async dynamic batching (#4901) * adapt to ray server * finish async * finish test * del test --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * Revert "[inference]Re push async dynamic batching (#4901)" (#4905) This reverts commit fbf3c09e673794ed18c91d4bab1a7dfea052e95a. * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Revert "[inference] Async dynamic batching (#4894)" (#4909) This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * [infer]Add Ray Distributed Environment Init Scripts (#4911) * Revert "[inference] Async dynamic batching (#4894)" This reverts commit fced14025043e29ce816b315f440601188f7f79f. * Add Ray Distributed Environment Init Scripts * support DynamicBatchManager base function * revert _set_tokenizer version * add driver async generate * add async test * fix bugs in test_ray_dist.py * add get_tokenizer.py * fix code style * fix bugs about No module named 'pydantic' in ci test * fix bugs in ci test * fix bugs in ci test * fix bugs in ci test * support dynamic batch for bloom model and is_running function * [Inference]Test for new Async engine (#4935) * infer engine * infer engine * test engine * test engine * new manager * change step * add * test * fix * fix * finish test * finish test * finish test * finish test * add license --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> * add assertion for config (#4947) * [Inference] Finish dynamic batching offline test (#4948) * test * fix test * fix quant * add default * fix * fix some bugs * fix some bugs * fix * fix bug * fix bugs * reset param --------- Co-authored-by: yuehuayingxueluo <867460659@qq.com> Co-authored-by: Cuiqing Li <lixx3527@gmail.com> Co-authored-by: CjhHa1 <cjh18671720497outlook.com>
2023-10-30 02:52:19 +00:00
import logging
import yaml
from pydantic import BaseModel
logger = logging.getLogger(__name__)
class EngineArgsClass(BaseModel):
"""Config for Engine"""
model: str
tensor_parallel_size: int = 2
max_batch_size: int = 4
max_input_len: int = 128
max_output_len: int = 32
class RooterArgsClass(BaseModel):
"""Config for Rooter"""
max_total_token_num: int = 42
batch_max_tokens: int = 42
eos_id: int = 0
disable_log_stats: bool = False
log_stats_interval: int = 10
model: str
class RayInitConfig(BaseModel):
"""All-together configs without app router config"""
engine_config_data: EngineArgsClass
router_config_data: RooterArgsClass
@classmethod
def from_yaml_path(cls, path: str):
try:
with open(path, "r") as yaml_file:
try:
config = yaml.safe_load(yaml_file)
# serve deployment config
engine_config = config.get("engine_config", {})
router_config = config.get("router_config", {})
return cls(
engine_config_data=engine_config,
router_config_data=router_config,
)
except yaml.YAMLError as e:
logger.error(f"An Error occurred when parsing yaml: {e}")
raise
except FileNotFoundError:
logger.error(f"The file '{path}' does not exist!")
raise
except OSError as e:
logger.error(f"An Error occurred: {e}")
raise