mirror of https://github.com/hpcaitech/ColossalAI
140 lines
6.0 KiB
Python
140 lines
6.0 KiB
Python
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
||
|
import torch
|
||
|
from torch.fx.node import Node
|
||
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
||
|
from colossalai.device.device_mesh import DeviceMesh
|
||
|
from typing import Union, Dict, List, Optional
|
||
|
import warnings
|
||
|
from functools import reduce
|
||
|
import functools
|
||
|
import operator
|
||
|
from .constants import INFINITY_COST
|
||
|
|
||
|
|
||
|
def generate_sharding_spec(input_: Union[Node, torch.Tensor], device_mesh: DeviceMesh,
|
||
|
dim_partition_dict: Dict[int, List[int]]) -> ShardingSpec:
|
||
|
"""
|
||
|
Generate the sharding spec of the tensor based on the given dim_partition_dict.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
input_ (Union[Node, torch.Tensor]): the input can be a Node object or a PyTorch tensor. If a node is used, it will look for its meta data associated with this node.
|
||
|
device_mesh (DeviceMesh): a DeviceMesh object which contains the meta information about the cluster.
|
||
|
dim_partition_dict (Dict[int, List[int]]): a dictionary to specify the sharding specs, the key is the tensor dimension and the value is the mesh dimension for sharding.
|
||
|
"""
|
||
|
|
||
|
if isinstance(input_, Node):
|
||
|
assert hasattr(input_, '_meta_data'), f'The given node has no attribte _meta_data'
|
||
|
meta_tensor = input_._meta_data
|
||
|
assert meta_tensor is not None, "The given node's _meta_data attribute is None"
|
||
|
shape = meta_tensor.shape
|
||
|
elif isinstance(input_, torch.Tensor):
|
||
|
shape = input_.shape
|
||
|
else:
|
||
|
raise TypeError(
|
||
|
f'We cannot generate sharding spec for {type(input_)} type, only torch.fx.Node or torch.Tensor is expected.'
|
||
|
)
|
||
|
for dim_index, sharding_index_list in dim_partition_dict.items():
|
||
|
sharding_list = [device_mesh.mesh_shape[sharding_index] for sharding_index in sharding_index_list]
|
||
|
sharding_size = reduce(operator.mul, sharding_list, 1)
|
||
|
assert shape[
|
||
|
dim_index] % sharding_size == 0, f'we cannot shard the {dim_index} dimension of tensor into {sharding_size} partitions.'
|
||
|
|
||
|
sharding_spec = ShardingSpec(device_mesh=device_mesh, entire_shape=shape, dim_partition_dict=dim_partition_dict)
|
||
|
return sharding_spec
|
||
|
|
||
|
|
||
|
def generate_resharding_costs(nodes: List[Node],
|
||
|
sharding_specs: List[ShardingSpec],
|
||
|
count_backward: Optional[bool] = True,
|
||
|
dtype: Optional[torch.dtype] = None,
|
||
|
index=None):
|
||
|
'''
|
||
|
Compute the resharding costs with this specific strategy.
|
||
|
|
||
|
Argument:
|
||
|
nodes (List[Node]): a list of nodes
|
||
|
sharding_spec_for_input(ShardingSpec): a list of ShardingSpec for the nodes.
|
||
|
count_backward (Optional[bool]): whether to include the cost of resharding in the backward pass, default is True. False can be used for inference.
|
||
|
dtype (Optional[torch.dtype]): the data type for cost calculation, default is None.
|
||
|
'''
|
||
|
# The resharding_cost of weight is counted due to sharing weight cases.
|
||
|
resharding_costs = {}
|
||
|
size_per_elem_bytes = torch.tensor([], dtype=dtype).element_size()
|
||
|
|
||
|
# shape consistency manager is a singleton class
|
||
|
shape_consistency_manager = ShapeConsistencyManager()
|
||
|
|
||
|
for input_node, input_spec in zip(nodes, sharding_specs):
|
||
|
resharding_costs[input_node] = []
|
||
|
for strategy in input_node.strategies_vector:
|
||
|
input_sharding_spec = strategy.output_sharding_spec
|
||
|
if not isinstance(input_sharding_spec, ShardingSpec):
|
||
|
assert isinstance(input_sharding_spec, list), 'only ShardingSpec or List[ShardingSpec] is expected.'
|
||
|
input_sharding_spec = input_sharding_spec[index]
|
||
|
assert isinstance(input_sharding_spec, ShardingSpec), f'The input node should NOT be a tuple of tensor.'
|
||
|
try:
|
||
|
# compute the resharding cost
|
||
|
_, _, total_resharding_cost = shape_consistency_manager.shape_consistency(
|
||
|
input_sharding_spec, input_spec)
|
||
|
|
||
|
# we need multiply the size of elem dtype to get correct communication cost
|
||
|
resharding_cost = total_resharding_cost["total"] * size_per_elem_bytes
|
||
|
except AssertionError as e:
|
||
|
warnings.warn(f'{e}')
|
||
|
resharding_cost = INFINITY_COST
|
||
|
resharding_costs[input_node].append(resharding_cost)
|
||
|
return resharding_costs
|
||
|
|
||
|
|
||
|
def exception_handler(func):
|
||
|
"""
|
||
|
A function wrapper which executes the function with a specified seed.
|
||
|
"""
|
||
|
|
||
|
@functools.wraps(func)
|
||
|
def wrapper(*args, **kwargs):
|
||
|
try:
|
||
|
rst = func(*args, **kwargs)
|
||
|
return rst
|
||
|
except AssertionError as e:
|
||
|
warnings.warn(f'{e}')
|
||
|
|
||
|
return wrapper
|
||
|
|
||
|
|
||
|
def enumerate_all_possible_2d_sharding(mesh_dim_0, mesh_dim_1, dim_size):
|
||
|
dim_partition_list = []
|
||
|
# enumerate all the 2D sharding cases
|
||
|
for i in range(dim_size):
|
||
|
for j in range(i + 1, dim_size):
|
||
|
dim_partition_dict_0 = {i: [mesh_dim_0], j: [mesh_dim_1]}
|
||
|
dim_partition_dict_1 = {i: [mesh_dim_1], j: [mesh_dim_0]}
|
||
|
dim_partition_list.append(dim_partition_dict_0)
|
||
|
dim_partition_list.append(dim_partition_dict_1)
|
||
|
for i in range(dim_size):
|
||
|
dim_partition_dict_flatten = {i: [mesh_dim_0, mesh_dim_1]}
|
||
|
dim_partition_list.append(dim_partition_dict_flatten)
|
||
|
|
||
|
return dim_partition_list
|
||
|
|
||
|
|
||
|
def enumerate_all_possible_1d_sharding(mesh_dim_0, dim_size):
|
||
|
dim_partition_list = []
|
||
|
# enumerate all the 1D sharding cases
|
||
|
for i in range(dim_size):
|
||
|
dim_partition_dict_0 = {i: [mesh_dim_0]}
|
||
|
dim_partition_list.append(dim_partition_dict_0)
|
||
|
|
||
|
return dim_partition_list
|
||
|
|
||
|
|
||
|
def generate_sharding_size(dim_partition_dict, device_mesh):
|
||
|
total_sharding_size = 1
|
||
|
for mesh_dim_list in dim_partition_dict.values():
|
||
|
mesh_dim_sharding_size = [device_mesh.shape[mesh_dim] for mesh_dim in mesh_dim_list]
|
||
|
sharding_size = reduce(operator.mul, mesh_dim_sharding_size)
|
||
|
total_sharding_size *= sharding_size
|
||
|
|
||
|
return total_sharding_size
|