mirror of https://github.com/hpcaitech/ColossalAI
331 lines
14 KiB
Python
331 lines
14 KiB
Python
|
# MIT License
|
||
|
|
||
|
# Copyright (c) 2022 Ming Zhong
|
||
|
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
# of this software and associated documentation files (the "Software"), to deal
|
||
|
# in the Software without restriction, including without limitation the rights
|
||
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
# copies of the Software, and to permit persons to whom the Software is
|
||
|
# furnished to do so, subject to the following conditions:
|
||
|
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
|
||
|
import numpy as np
|
||
|
from nltk import sent_tokenize
|
||
|
|
||
|
from .scorer import UniEvaluator
|
||
|
from .utils import add_question
|
||
|
|
||
|
|
||
|
class SumEvaluator:
|
||
|
|
||
|
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
""" Set up evaluator for text summarization """
|
||
|
self.scorer = UniEvaluator(
|
||
|
model_name_or_path='MingZhong/unieval-sum' if model_name_or_path == "" else model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
self.task = 'summarization'
|
||
|
self.dimensions = ['coherence', 'consistency', 'fluency', 'relevance']
|
||
|
|
||
|
def evaluate(self, data, category, dims=None, overall=True):
|
||
|
"""
|
||
|
Get the scores of all the given dimensions
|
||
|
|
||
|
category: The category to be evaluated.
|
||
|
|
||
|
dims: A list of dimensions to be evaluated. If dims is None, SumEvaluator will evaluate
|
||
|
four dimensions: coherence, consistency, fluency, relevance.
|
||
|
|
||
|
overall: indicates whether the overall score is to be calculated.
|
||
|
Overall score can be customized to a combination of scores based on different
|
||
|
dimensions. The default here is the average score of all the given dimensions.
|
||
|
"""
|
||
|
n_data = len(data)
|
||
|
eval_scores = [{} for _ in range(n_data)]
|
||
|
|
||
|
if dims == None:
|
||
|
eval_dims = self.dimensions
|
||
|
else:
|
||
|
assert isinstance(dims, list)
|
||
|
eval_dims = dims
|
||
|
|
||
|
for dim in eval_dims:
|
||
|
# Calculate average sentence-level scores for 'consistency' and 'fluency'
|
||
|
if dim == 'consistency' or dim == 'fluency':
|
||
|
src_list, output_list = [], []
|
||
|
n_sents = [] # the number of sentences in each generated summary
|
||
|
for i in range(n_data):
|
||
|
source = data[i]['source']
|
||
|
system_outputs = sent_tokenize(data[i]['system_output'])
|
||
|
n_sents.append(len(system_outputs))
|
||
|
for j in range(len(system_outputs)):
|
||
|
src_list.append(source)
|
||
|
output_list.append(system_outputs[j])
|
||
|
input_list = add_question(dimension=dim, output=output_list, src=src_list, task=self.task)
|
||
|
sent_score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
# Get average score for each sample
|
||
|
start_idx = 0
|
||
|
score = []
|
||
|
for cur_n_sent in n_sents:
|
||
|
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]) / cur_n_sent)
|
||
|
start_idx += cur_n_sent
|
||
|
|
||
|
# Calculate summary-level score for 'coherence' and 'relevance'
|
||
|
elif dim == 'coherence' or dim == 'relevance':
|
||
|
src_list, output_list, ref_list = [], [], []
|
||
|
for i in range(n_data):
|
||
|
src_list.append(data[i]['source'])
|
||
|
output_list.append(data[i]['system_output'])
|
||
|
if dim == 'relevance':
|
||
|
ref_list.append(data[i]['reference'])
|
||
|
input_list = add_question(dimension=dim, output=output_list, src=src_list, ref=ref_list, task=self.task)
|
||
|
score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
# Please customize other dimensions here for summarization
|
||
|
else:
|
||
|
raise NotImplementedError('The input format for this dimension is still undefined. \
|
||
|
Please customize it first.')
|
||
|
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i][dim] = score[i]
|
||
|
|
||
|
# Customize your overall score here.
|
||
|
if overall == True:
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||
|
|
||
|
return eval_scores
|
||
|
|
||
|
|
||
|
class DialogEvaluator:
|
||
|
|
||
|
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
""" Set up evaluator for dialogues """
|
||
|
self.scorer = UniEvaluator(
|
||
|
model_name_or_path='MingZhong/unieval-dialog' if model_name_or_path == "" else model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
self.task = 'dialogue'
|
||
|
self.dimensions = ['naturalness', 'coherence', 'engagingness', 'groundedness', 'understandability']
|
||
|
|
||
|
def evaluate(self, data, category, dims=None, overall=True):
|
||
|
"""
|
||
|
Get the scores of all the given dimensions
|
||
|
|
||
|
category: The category to be evaluated.
|
||
|
|
||
|
dims: A list of dimensions to be evaluated. If dims is None, DialogEvaluator will evaluate
|
||
|
five dimensions: naturalness, coherence, engagingness, groundedness and understandability.
|
||
|
|
||
|
overall: indicates whether the overall score is to be calculated.
|
||
|
Overall score can be customized to a combination of scores based on different
|
||
|
dimensions. The default here is the average score of all the given dimensions.
|
||
|
"""
|
||
|
n_data = len(data)
|
||
|
eval_scores = [{} for _ in range(n_data)]
|
||
|
|
||
|
if dims == None:
|
||
|
eval_dims = self.dimensions
|
||
|
else:
|
||
|
assert isinstance(dims, list)
|
||
|
eval_dims = dims
|
||
|
|
||
|
for dim in eval_dims:
|
||
|
# Calculate summation score for 'engagingness'
|
||
|
if dim == 'engagingness':
|
||
|
src_list, output_list, context_list = [], [], []
|
||
|
n_sents = [] # the number of sentences in each generated response
|
||
|
for i in range(n_data):
|
||
|
source = data[i]['source']
|
||
|
context = data[i]['context']
|
||
|
system_outputs = sent_tokenize(data[i]['system_output'])
|
||
|
n_sents.append(len(system_outputs))
|
||
|
for j in range(len(system_outputs)):
|
||
|
src_list.append(source)
|
||
|
context_list.append(context)
|
||
|
output_list.append(system_outputs[j])
|
||
|
input_list = add_question(dimension=dim,
|
||
|
output=output_list,
|
||
|
src=src_list,
|
||
|
context=context_list,
|
||
|
task=self.task)
|
||
|
sent_score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
# Get the summation score for each sample
|
||
|
start_idx = 0
|
||
|
score = []
|
||
|
for cur_n_sent in n_sents:
|
||
|
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]))
|
||
|
start_idx += cur_n_sent
|
||
|
|
||
|
# Calculate turn-level score for other dimensions
|
||
|
elif dim in ['naturalness', 'coherence', 'groundedness', 'understandability']:
|
||
|
src_list, output_list, context_list = [], [], []
|
||
|
for i in range(n_data):
|
||
|
src_list.append(data[i]['source'])
|
||
|
output_list.append(data[i]['system_output'])
|
||
|
context_list.append(data[i]['context'])
|
||
|
input_list = add_question(dimension=dim,
|
||
|
output=output_list,
|
||
|
src=src_list,
|
||
|
context=context_list,
|
||
|
task=self.task)
|
||
|
score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
# Please customize other dimensions here for summarization
|
||
|
else:
|
||
|
raise NotImplementedError('The input format for this dimension is still undefined. \
|
||
|
Please customize it first.')
|
||
|
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i][dim] = score[i]
|
||
|
|
||
|
# Customize your overall score here.
|
||
|
if overall == True:
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||
|
|
||
|
return eval_scores
|
||
|
|
||
|
|
||
|
class D2tEvaluator:
|
||
|
|
||
|
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
""" Set up evaluator for data-to-text """
|
||
|
self.scorer = UniEvaluator(
|
||
|
model_name_or_path='MingZhong/unieval-sum' if model_name_or_path == "" else model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
self.task = 'data2text'
|
||
|
self.dimensions = ['naturalness', 'informativeness']
|
||
|
|
||
|
def evaluate(self, data, category, dims=None, overall=True):
|
||
|
"""
|
||
|
Get the scores of all the given dimensions
|
||
|
|
||
|
category: The category to be evaluated.
|
||
|
|
||
|
dims: A list of dimensions to be evaluated. If dims is None, D2tEvaluator will evaluate
|
||
|
two dimensions: naturalness and informativeness.
|
||
|
|
||
|
overall: indicates whether the overall score is to be calculated.
|
||
|
Overall score can be customized to a combination of scores based on different
|
||
|
dimensions. The default here is the average score of all the given dimensions.
|
||
|
"""
|
||
|
n_data = len(data)
|
||
|
eval_scores = [{} for _ in range(n_data)]
|
||
|
|
||
|
if dims == None:
|
||
|
eval_dims = self.dimensions
|
||
|
else:
|
||
|
assert isinstance(dims, list)
|
||
|
eval_dims = dims
|
||
|
|
||
|
for dim in eval_dims:
|
||
|
output_list, ref_list = [], []
|
||
|
for i in range(n_data):
|
||
|
output_list.append(data[i]['system_output'])
|
||
|
ref_list.append(data[i]['reference'])
|
||
|
|
||
|
input_list = add_question(dimension=dim, output=output_list, ref=ref_list, task=self.task)
|
||
|
score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i][dim] = score[i]
|
||
|
|
||
|
# Customize your overall score here.
|
||
|
if overall == True:
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i]['overall'] = np.mean(list(eval_scores[i].values()))
|
||
|
|
||
|
return eval_scores
|
||
|
|
||
|
|
||
|
class FactEvaluator:
|
||
|
|
||
|
def __init__(self, model_name_or_path, max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
""" Set up evaluator for factual consistency detection """
|
||
|
self.scorer = UniEvaluator(
|
||
|
model_name_or_path='MingZhong/unieval-fact' if model_name_or_path == "" else model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
self.task = 'fact'
|
||
|
self.dim = 'consistency'
|
||
|
|
||
|
def evaluate(self, data, category):
|
||
|
"""
|
||
|
Get the factual consistency score (only 1 dimension for this task)
|
||
|
|
||
|
category: The category to be evaluated.
|
||
|
"""
|
||
|
n_data = len(data)
|
||
|
eval_scores = [{} for _ in range(n_data)]
|
||
|
|
||
|
# Calculate average sentence-level scores for facutal consistency
|
||
|
src_list, output_list = [], []
|
||
|
n_sents = [] # the number of sentences in the claim
|
||
|
for i in range(n_data):
|
||
|
source = data[i]['source']
|
||
|
system_outputs = sent_tokenize(data[i]['system_output'])
|
||
|
n_sents.append(len(system_outputs))
|
||
|
for j in range(len(system_outputs)):
|
||
|
src_list.append(source)
|
||
|
output_list.append(system_outputs[j])
|
||
|
input_list = add_question(dimension=self.dim, output=output_list, src=src_list, task=self.task)
|
||
|
sent_score = self.scorer.score(input_list, self.task, category, dim)
|
||
|
|
||
|
# Get average score for each sample
|
||
|
start_idx = 0
|
||
|
score = []
|
||
|
for cur_n_sent in n_sents:
|
||
|
score.append(sum(sent_score[start_idx:start_idx + cur_n_sent]) / cur_n_sent)
|
||
|
start_idx += cur_n_sent
|
||
|
|
||
|
for i in range(n_data):
|
||
|
eval_scores[i][self.dim] = score[i]
|
||
|
|
||
|
return eval_scores
|
||
|
|
||
|
|
||
|
def get_evaluator(task, model_name_or_path="", max_length=1024, device='cuda:0', cache_dir=None):
|
||
|
assert task in ['summarization', 'dialogue', 'data2text', 'fact']
|
||
|
if task == 'summarization':
|
||
|
return SumEvaluator(model_name_or_path=model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
elif task == 'dialogue':
|
||
|
return DialogEvaluator(model_name_or_path=model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
elif task == 'data2text':
|
||
|
return D2tEvaluator(model_name_or_path=model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
elif task == 'fact':
|
||
|
return FactEvaluator(model_name_or_path=model_name_or_path,
|
||
|
max_length=max_length,
|
||
|
device=device,
|
||
|
cache_dir=cache_dir)
|
||
|
else:
|
||
|
raise NotImplementedError('Other tasks are not implemented, \
|
||
|
please customize specific tasks here.')
|