2022-12-07 15:04:02 +00:00
|
|
|
import pytest
|
|
|
|
import torch
|
2023-08-24 01:29:25 +00:00
|
|
|
import torch.distributed as dist
|
2022-12-07 15:04:02 +00:00
|
|
|
|
|
|
|
import colossalai
|
2023-04-06 06:51:35 +00:00
|
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
2023-08-24 01:29:25 +00:00
|
|
|
from colossalai.zero import GeminiDDP
|
|
|
|
from colossalai.zero.gemini.chunk import search_chunk_configuration
|
2023-04-04 05:48:16 +00:00
|
|
|
from colossalai.zero.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
|
2022-12-07 15:04:02 +00:00
|
|
|
from tests.components_to_test import run_fwd_bwd
|
|
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
from tests.test_tensor.common_utils import set_seed
|
|
|
|
|
|
|
|
# run gemini use the runtime memory tracer
|
|
|
|
|
|
|
|
|
|
|
|
@parameterize('placement_policy', ['auto'])
|
|
|
|
@parameterize('keep_gather', [False])
|
2022-12-13 08:34:10 +00:00
|
|
|
@parameterize('model_name', ['repeated_computed_layers', 'bert', 'albert', 'gpt2'])
|
2022-12-07 15:04:02 +00:00
|
|
|
@parameterize('use_grad_checkpoint', [False, True])
|
|
|
|
def run_gemini_use_rmt(placement_policy, keep_gather, model_name: str, use_grad_checkpoint: bool = False):
|
|
|
|
set_seed(42)
|
|
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
|
|
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
model = model_builder(use_grad_checkpoint).cuda()
|
2022-12-07 15:04:02 +00:00
|
|
|
|
|
|
|
print(f'model_name {model_name}')
|
|
|
|
runtime_mem_tracer = RuntimeMemTracer(model)
|
|
|
|
for i, (input_ids, label) in enumerate(train_dataloader):
|
|
|
|
if i > 0:
|
|
|
|
break
|
|
|
|
input_ids, label = input_ids.cuda(), label.cuda()
|
|
|
|
|
|
|
|
# mem tracing
|
|
|
|
if i == 0:
|
|
|
|
run_fwd_bwd(runtime_mem_tracer, input_ids, label, criterion, runtime_mem_tracer)
|
|
|
|
memstats = runtime_mem_tracer.memstats()
|
|
|
|
runtime_tracer_non_model_data = runtime_mem_tracer._memstats._non_model_data_cuda_list
|
2022-12-13 06:14:55 +00:00
|
|
|
print('runtime tracer non model data points: ', len(runtime_tracer_non_model_data))
|
2022-12-13 07:44:07 +00:00
|
|
|
print('runtime tracer: ', runtime_tracer_non_model_data)
|
2022-12-13 09:11:31 +00:00
|
|
|
print([memstats.param_used_step(p) for p in model.parameters()])
|
|
|
|
|
|
|
|
if model_name == 'repeated_computed_layers':
|
|
|
|
for idx, p in enumerate(model.parameters()):
|
|
|
|
step_list = memstats.param_used_step(p)
|
|
|
|
if idx < 4:
|
|
|
|
assert len(step_list) == 4
|
2022-12-07 15:04:02 +00:00
|
|
|
|
2022-12-13 08:34:10 +00:00
|
|
|
if model_name == 'repeated_computed_layers':
|
|
|
|
for idx, p in enumerate(model.parameters()):
|
2022-12-13 16:47:06 +00:00
|
|
|
step_list = memstats.param_used_step(p)
|
2022-12-13 08:34:10 +00:00
|
|
|
if idx < 4:
|
|
|
|
assert len(step_list) == 4
|
|
|
|
|
2022-12-13 06:14:55 +00:00
|
|
|
world_size = torch.distributed.get_world_size()
|
2023-06-25 05:34:15 +00:00
|
|
|
config_dict, *_ = search_chunk_configuration(model, search_range_m=1, search_interval=100)
|
2022-12-13 06:14:55 +00:00
|
|
|
config_dict[world_size]['chunk_size'] = 5000
|
|
|
|
config_dict[world_size]['keep_gathered'] = keep_gather
|
2023-08-24 01:29:25 +00:00
|
|
|
model = GeminiDDP(model,
|
|
|
|
chunk_config_dict=config_dict,
|
|
|
|
placement_policy=placement_policy,
|
|
|
|
pin_memory=True,
|
|
|
|
memstats=memstats)
|
2022-12-07 15:04:02 +00:00
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
set_seed(dist.get_rank())
|
2022-12-07 15:04:02 +00:00
|
|
|
for i, (input_ids, label) in enumerate(train_dataloader):
|
|
|
|
# you can only test a single fwd + bwd.
|
|
|
|
# after bwd param is grad for Gemini, due to the chunk reuse optimization.
|
2022-12-12 10:06:16 +00:00
|
|
|
# print(f'iteration {i}')
|
|
|
|
if i > 4:
|
2022-12-07 15:04:02 +00:00
|
|
|
break
|
|
|
|
input_ids, label = input_ids.cuda(), label.cuda()
|
|
|
|
|
|
|
|
set_seed(42)
|
2022-12-13 06:14:55 +00:00
|
|
|
loss = run_fwd_bwd(model, input_ids, label, criterion, model)
|
2022-12-07 15:04:02 +00:00
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
gemini_non_model_data = model.gemini_manager._mem_stats_collector._memstats.non_model_data_list('cuda')
|
2022-12-07 15:04:02 +00:00
|
|
|
|
|
|
|
# print('gemini non model data:', gemini_non_model_data)
|
|
|
|
|
|
|
|
assert len(gemini_non_model_data) == len(runtime_tracer_non_model_data), \
|
|
|
|
f'model_name {model_name} {len(gemini_non_model_data)} vs {len(runtime_tracer_non_model_data)}'
|
|
|
|
|
|
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
|
|
config = {}
|
|
|
|
colossalai.launch(config=config, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
run_gemini_use_rmt()
|
|
|
|
|
|
|
|
|
2023-08-24 01:29:25 +00:00
|
|
|
@pytest.mark.skip("this is not used")
|
2022-12-07 15:04:02 +00:00
|
|
|
@pytest.mark.dist
|
|
|
|
@pytest.mark.parametrize('world_size', [1, 4])
|
|
|
|
@rerun_if_address_is_in_use()
|
|
|
|
def test_gemini_use_rmt(world_size):
|
2023-04-06 06:51:35 +00:00
|
|
|
spawn(run_dist, world_size)
|
2022-12-07 15:04:02 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_gemini_use_rmt(1)
|