ColossalAI/colossalai/utils/memory_utils/utils.py

83 lines
2.9 KiB
Python
Raw Normal View History

import torch
2022-04-01 01:22:33 +00:00
from colossalai.context.parallel_mode import ParallelMode
from colossalai.utils import get_current_device
2022-04-01 01:22:33 +00:00
from collections import namedtuple
import psutil
from colossalai.core import global_context as gpc
2022-03-24 08:57:13 +00:00
_GLOBAL_CUDA_MEM_FRACTION = 1.0
2022-03-24 08:57:13 +00:00
2022-04-01 01:22:33 +00:00
# copy from PatrickStar
def _get_cpu_memory_info():
ps_mem_info = namedtuple("ps_mem_info", ["total", "free", "cached", "buffers", "used"])
try:
# psutil reads the memory info from /proc/memory_info,
# which results in returning the host memory instead of
# that of container.
# Here we try to read the container memory with method in:
# https://stackoverflow.com/a/46213331/5163915
mems = {}
with open("/sys/fs/cgroup/memory/memory.meminfo", "rb") as f:
for line in f:
fields = line.split()
mems[fields[0]] = int(fields[1]) * 1024
total = mems[b"MemTotal:"]
free = mems[b"MemFree:"]
cached = mems[b"Cached:"]
buffers = mems[b"Buffers:"]
used = total - free - cached - buffers
if used < 0:
used = total - free
mem_info = ps_mem_info(total=total, free=free, cached=cached, buffers=buffers, used=used)
except FileNotFoundError:
mems = psutil.virtual_memory()
mem_info = ps_mem_info(
total=mems.total,
free=mems.free,
cached=mems.cached,
buffers=mems.buffers,
used=mems.used,
)
return mem_info
def colo_device_memory_used(device) -> int:
if not isinstance(device, torch.device):
device = torch.device(f"cuda:{device}")
if device.type == 'cpu':
mem_info = _get_cpu_memory_info()
# FIXME(jiaruifang) only work for 1-CPU multi-GPU
# CPU memory is sharded with all processes
# Not support multi-GPU multi-CPU
# We need a local_world_size here
ret = mem_info.used / gpc.get_world_size(ParallelMode.DATA)
return ret
elif device.type == 'cuda':
ret: int = torch.cuda.memory_allocated(device)
# get the peak memory to report correct data, so reset the counter for the next call
if hasattr(torch.cuda, "reset_peak_memory_stats"): # pytorch 1.4+
torch.cuda.reset_peak_memory_stats(device)
return ret
2022-03-24 08:57:13 +00:00
def colo_set_process_memory_fraction(ratio: float) -> None:
"""colo_set_process_memory_fraction
set how much cuda memory used on the gpu belonging to the current process.
Args:
ratio (float): a ratio between 0. ~ 1.
"""
global _GLOBAL_CUDA_MEM_FRACTION
_GLOBAL_CUDA_MEM_FRACTION = ratio
torch.cuda.set_per_process_memory_fraction(_GLOBAL_CUDA_MEM_FRACTION, get_current_device())
def colo_cuda_memory_capacity() -> float:
"""
Get cuda memory capacity of the current cuda.
"""
2022-03-24 08:57:13 +00:00
return torch.cuda.get_device_properties(get_current_device()).total_memory * _GLOBAL_CUDA_MEM_FRACTION